YOUR
TIVIEX SINICLLAIR
| 1000
ANDZX81

[y

Your Timex

Sinclair 1000 and ZX81

v

Your Timex

Sinclair 1000 and ZX81

Douglas Hergert

&

Berkeley o Paris ¢ Diisseldorf

Al

CETINTE

Book design by Valerie Brewster
Photography by Eye to Eye Images, San Francisco
Cover Design by Jack Morton Productions, San Francisco

Timex Sinclair 1000 is a trademark of Timex Computer Corporation.
ZX81 is a trademark of Sinclair Research, Ltd.

VU-CALC® PSION.

VisiCalc is a registered trademark of VisiCorp, Inc.

SuperCalc is a trademark of Sorcim Corporation.

Sybex is not affiliated with any manufacturer.

The quotation from “The Killion,” by Ian Frazier, appears by permission of The New Yorker
Magazine, Inc.

Every effort has been made to supply complete and accurate information. However, Sybex assumes
no responsibility for its use, nor for any infringements of patents or other rights of third parties which
would result.

©1983 SYBEX Inc., 2344 Sixth Street, Berkeley, CA 94710. World Rights reserved. No part of this
publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but
not limited to photocopy, photograph, magnetic or other record, without the prior agreement and
written permission of the publisher.

Library of Congress Card Number: 82-62360
ISBN 0-89588-099-7

First Edition 1983

Printed in the United States of America
10987654321

To Mme Berthe Badji

Contents

Acknowledgements ix

Introduction xi

The Cast of Characters 1

The First Act:

Enter Your Program 17

The Plot Thickens:

A Short, Graphic Course in BASIC 31
Take Five:

Numbers on Your Computer 95

Words, Words, Words:
Strings and String Functions
on Your Computer 129

Appendix A: The BASIC Vocabulary 145
Appendix B: The T/S 1000 Error Codes 155

Index 157

N, N R

Acknowledgements

The following people helped develop an ideainto a manuscript,
and then the manuscript into a book: James Compton, Joel
Kreisman, and Rudolph Langer, editorial and technical support;
Bret Rohmer, production; Elaine Foster and Donna Scanlon,
word processing; Ingrid Owen, Sharon Leong and Margaret
Cusick, paste-up; Valerie Brewster, typesetting; and Hilda van
Genderen and Cheryl Wilcox, proofreading.

I would also like to extend a personal note of thanks to the entire
staff at Sybex.

D.H.

Introduction:
Entering the
Computer Age

You’ve just arrived home with your new computer—the
Timex/Sinclair 1000™. This is a moment of great excitement and
enthusiasm; you’ve finally entered the computer age. No longer
will you sit back in quiet ignorance as your friends talk about their
personal computers. Now you’ll be part of the club. You reflect
happily on the small investment you had to make, compared to the
thousands of dollars others have spent for their computers.

You plug in your computer, attach it to the TV set, and note
with great satisfaction that the computer is responding as expected.

At this point there are two very different scenarios that might
describe your subsequent computer experience. The first scenario,
which ends in disillusionment and disappointment, is completely
unsatisfactory. The second scenario, which you have every reason
to expect, is the one that this book will lead you through. Let’s
consider these two scenarios.

In scenario one you begin pecking at the keyboard and watching
what happens on the screen; at first you marvel at the power you
seem to have over the action of the computer. But gradually you
begin to realize that you don’t really understand what’s happening.
True, the computer does something each time you press the key-
board, but what is it doing? Perhaps this is going to be a little more
work than you had anticipated. Never mind, you think, the manual
will explain it all. So you open up the little spiral-bound book that
came with the computer, and you begin reading. After a paragraph
or two you begin feeling a little uneasy. After several pages you feel
genuinely lost. Somehow this book seems to be addressed to people
who already know more than you do. You sense that it must cer-
tainly be filled with useful information for a person with a little
experience—as in fact it is—but how do you get started? You re-
turn to the computer, hopefully press a few more keys, thinking

X1t

that it will all come to you in a moment. But the moment never
arrives. Somehow all your initial enthusiasm is lost, replaced by an
unexpected feeling of confusion and disappointment. You unplug
the computer, put it in the closet, go out to mow the lawn . . . Two
or three months later you notice the computer, still sitting there in
the closet, with a thin layer of dust over the keyboard. You have
become fond of telling people that you own a computer, but, alas,
you always have to find a way of changing the subject when your
friends begin asking detailed questions. . .

In scenario two, you approach the computer more systemat-
ically. You realize right away that there’s a lot to learn about your
new computer, and the more you learn the greater your enthusiasm
becomes. You start out by mastering the Timex Sinclair keyboard.
You learn to enter commands, and you find out what each com-
mand means to the computer. You type a complete program in BA-
SIC, the computer language built into the T/S 1000, and impress
yourself with the amusing results. The experience becomes more
fascinating each time you sit down at the computer; you learn
about graphics, calculations, string handling. . . and before you
know it you are an accomplished BASIC programmer, impressing
not only yourself, but also your family and friends, with all the
things you can do on your new computer. After several weeks you
realize that you are more than a computer owner—much more
importantly, you are a computer user.

This book, Your Timex Stnclair 1000 and ZX81, was written to
make sure you experience the second of these two scenarios. If you
are completely new to computers, completely confused by all the
new computer vocabulary that everyone else seems to be picking
up automatically, then this book is for you. Your Timex Sinclair 1000
and ZX81 starts out at the very beginning of the story, and guides
you carefully through all the steps you need to follow to become a
satisfied computer user.

Chapter 1— The Cast of Characters—describes the hardware—all of
the equipment you’ll need to make the most of your computer. It
also gives you careful, step-by-step instructions for connecting
equipment to your computer. Finally, this chapter discusses your
own role in making the computer work for you, and the skills you
will begin developing as you use your computer.

Chapter 2— The First Act: Enter Your Program—is an introduction
to software, the instructions and programs that you prepare in order to

xu

guide your computer through specific tasks. You will start out
learning exactly how to use the T/S 1000 keyboard to communicate
with your computer. You will enter an entire program, run it, and,
in the process, get your first glimpse of the power of the BASIC
programming language. Finally, you’ll learn how to save a program
permanently on a cassette tape, so that you can use the program
again and again. This chapter ends with a consumer’s guide to
buying software, and a discussion of the pros and cons of buying vs.
writing your own programs.

Chapter 3— The Plot Thickens—starts you out in a quick and easy
course in BASIC. You'll learn how to instruct the computer to
repeat certain tasks over and over; to make decisions based on
current information; and to display the results on the TV screen
where you can study them. You’ll also learn all about the T/S
1000’s fwo kinds of graphics features, and, just for fun, you’ll see a
complete program that will allow you to draw pictures on the TV
screen.

Chapter 4— Take Five—is all about numbers and calculations
on your computer. You’ll find out how to store large amounts of
numerical data in your computer conveniently and efficiently. You’ll
see how you can use your computer as a “super calculator.” Fi-
nally, the major program in this chapter will show you how to cre-
ate bar graphs from any kind of numerical information.

Chapter 5— Words, Words, Words—describes the features of BA-
SIC that are designed for handling strings—that is, nonnumerical
information. This chapter features an amusing program that may
help you through those difficult moments in life when you just
can’t decide what to do.

Appendix A describes all the vocabulary of BASIC—that is, all
the instruction words that appear on your keyboard. You will be
able to use this appendix as a reference tool to help you write
programs.

Appendix B summarizes the T/S 1000 error codes.

Your Timex/Sinclair 1000 and ZX81 is organized so that the infor-
mation presented in one chapter is used in the next; each chapter
builds on the previous chapters. To use this book successfully, you
should work through it with your computer at hand, trying each
new instruction as it is presented, entering and running all the
programs as you encounter them. If you take as much time as you
need to master each step before you go on to the next, you will

xw

finish this book with a thorough understanding of your computer’s
capabilities and the best ways to use them.

The most important thing you bring home from the store along
with your Timex Sinclair 1000 is the tremendous enthusiasm of a
new computer owner. Don’t lose that enthusiasm. Let this book
teach you what you need to know to make the most of your new
computer.

Note to ZX81 users:

You too can use this book as a hands-on introduction to your
new computer. The ZX81 offers the same programming com-
mands, has the same keyboard, and uses the same added equip-
ment as the T/S 1000. The only significant difference between the
two computers is in memory capacity. While the T/S 1000 starts
out with 2K of memory, the ZX81 has only 1K. A few of the longer
programs in this book do require 2K of memory; however, if you
decide to upgrade your ZX81 with the optional 16K memory mod-
ule, you will be able to run even these longer programs on your
computer.

Your Timex

Sinclair 1000 and ZX81

Chapter 1

The Cast of Characters

INTRODUCTION

As you probably already know, the Timex Sinclair 1000
computer—amazing and powerful a machine though it certainly is,
housed in its sleek little black plastic box—is of little use to you all
by itself. To use it effectively, you have to attach other equipment
to it. Some of these attachments are ordinary household items: a
TV set, and a cassette tape recorder. Others are specialized items
that are designed specifically to work with the T/S 1000 computer:
for example, the printer, and the extra memory module. Most of
these attachments are involved in two general sorts of jobs: sending
information to, or receiving information from, your computer.
These two jobs are referred to as input and output, respectively.

In this first chapter we will take a quick look at the computer
and some of the equipment—required or optional—that can be
attached to it. As we explore the jobs of the different components,
we will learn how to attach them properly to the computer. We’ll
also discuss the different roles that you, the computer user, can

play. By the end of this chapter, you’ll be ready to start working
with your computer.

THE LEADING ROLE—THE T/S 1000

Take a look at the computer unit. It’s worth spending some
time examining it and making note of several aspects of its design
before you actually begin working with it. Figures 1.1 to 1.3 show
the computer from three different angles; let’s consider each one in
turn.
At the front of the computer is the keyboard area. You will give
commands and supply data to the computer via this keyboard.
Thus, the keyboard is the computer’s main input device. At first
you may have trouble believing that a flat piece of plastic can really
work as a keyboard. But you will soon find out that the key areas

2 Your Timex Sinclair 1000 and ZX81

are touch-sensitive. This means that once the computer is turned on, a
slight pressure from your finger on one of the keys will cause a
message to be sent from the keyboard to the computer.

The 26 letters of the alphabet, and the 10 digits, arranged in the
same order as on a typewriter, dominate the keyboard. But along
with the letters and digits, the keyboard also displays an assortment
of words, symbols, and tiny graphic blocks. The words are the
commands and instructions that you can give the computer in order
to request some action. You'’ll be learning what each of these words
means as you read this book and as you begin experimenting with
your computer.

The reason for including these command words directly on the
keyboard is simple. Instead of having to type commands letter by
letter, you need only press a single key to send a command or
instruction word to the computer. This may not seem especially

5 PR 08 06 06 0P 65 09 6 6l
6 0 6 05 6B 0 16 (N 00 08
(¥ 68 659 0P £ CF 1 (5 (W 68
£3 £ £ (3 O 09 05 (6 58 8

Figure 1.1: The Keyboard of the T/S 1000 Computer

The Cast of Characters 3

convenient to you at first; starting out you may spend more time
searching for the command words than you would have spent typing
them letter by letter. But with practice you’ll become familiar with
the keyboard arrangement, and your fingers will move automati-
cally to the keys you want. Of course, you can’t perform anything
like two-handed touch-typing on this keyboard, but you’ll be sur-
prised at how efficiently you’ll be able to type on it after just a few
days of use.

Since some of the keys have as many as five different words or
symbols associated with them, a system is required for “shifting” the
keyboard usage from one kind of symbol or word to another. There
are several different kinds of shifting for the T/S 1000 keyboard,
and we’ll master them all in Chapter 2. Like the positions of the
command words, the shifting methods will become second nature
to you in no time at all.

Now look at the left side of your computer (shown in Figure
1.2), where you’ll find four jacks. The function of each jack is
clearly labeled: the first one is for connecting your TV set to the
computer; the middle two are for a tape recorder; and the last one,
labeled “9V DC?”, is for the power supply.

Included with your computer were all the plugs, cords, and
other hardware that you’ll need in order to make all these connec-
tions. Let’s take a quick inventory of these items. One cord is about

Figure 1.2: The Left View of the Computer

4 Your Timex Sinclair 1000 and ZX81

a yard long and has one large plug on each end. This is for the TV
connection. You can go ahead and plug one of the ends (either one)
into the computer jack labeled “TV” now. We’ll see shortly how to
attach the other end to the television set. By the way, none of the
plugs that attach to your computer are dangerous for you to touch,
even when the power is on.

You should also have a shorter cord with a pair of plugs on each
end. This is for the tape recorder. Put it aside for now (but don’t
lose it); we’ll examine the tape recorder connection in detail in
Chapter 2.

Finally, you’ll find a third cord with an AC adapter on one end
and a plug on the other. The adapter plugs into any 120 volt outlet
on your wall (or into an extension cord, if it’s more convenient),
and the small plug fits into the “9V DC” jack on the side of your
computer. You can plug it in now if you want to try it out. When
you do, the computer will be on and ready to operate. (Unfortu-
nately, you’ll have no idea what the computer is doing until you
attacha TV.) It’s a good idea to unplug the adapter whenever your
computer will be unused for a long period of time.

At the back of your computer (shown in Figure 1.3) is an open-
ing in the plastic, about two inches long and half an inch wide. This
opening exposes the edge of a thin board on which you’ll attach the
extra memory unit or the printer, if you decide to buy either of

Figure 1.3: The Back of the Computer

The Cast of Characters 5

these two optional pieces of equipment. We’ll discuss them both
later in this chapter. (If you already have one or both of them, a
word of caution: Do not plug them in or detach them while the
computer’s power is on.)

Now that we have examined the outside of the computer, what
about the inside—the contents of the black box. How much do you
need to know about the internal design of the T/S 1000 in order to
become a successful computer user? Undoubtedly you’ve begun
hearing and reading about the advances in integrated circuit
(“chip”) technology responsible for the personal computer revolu-
tion. You might also know that the chip that “does the thinking” for
your 'T/S 1000 is called a Z80 microprocessor. Just how much of
this information do you need to master before you will be able to
play a game of computer chess, or use the computer to develop
your family budget?

The answer, in case you haven'’t already guessed, is none.
Everything you need to know appears on the outside: the com-
mand set printed on the keyboard, and the information flashing
across your TV screen. As far as you need to be concerned, the
internal architecture of your computer could be summarized as
whimsically as Ian Frazier did in the following passage from his
short story, “The Killion”:

People unfamiliar with computers sometimes find it helpful to think of
them as fairly good-sized, complicated things. Computers range in size
from as small as a motel ice bucket to as large as an entertainment
complex like New Jersey’s Meadowlands, including the parking lot.
Inside, a computer will have a short red wire hooked to a terminal at
one end and to another terminal at the other end. Then there will be a
blue wire also hooked to terminals at either end, and then a green wire,
and then a yellow wire, then an orange wire, then a pink wire, and so on. *

Or you can believe the story about the team of highly trained
fleas . . . The point of all this nonsense is this: Your new computer
is designed so that its internal structure and workings need not con-
cern you. (Notice that the black plastic box that holds your com-
puter is not meant to be opened.) Like many other appliances in
your house—from your telephone to your garbage disposal—you

*Reprinted by permission; ©1982 Ian Frazier. Originally in The New Yorker.

6 Your Timex Sinclair 1000 and ZX81

don’t have to be an expert in the technology in order to make full
and successful use of the machine.

With this said, we should also note that many books and maga-
zines are available that will tell you anything you want to know
about the technology of microprocessors and computers. As you
work with your new computer and discover more and more about
how to use it, you may find yourself becoming interested in these
subjects, and you may want to read something about them. But
this is not required knowledge for using your computer; the choice
of what to investigate—and to what depth—is yours.

Finally, as a new computer user you’ll probably be a little
worried about somehow damaging your computer. Well, you can
relax. There’s not much you can do wrong to the T/S 1000. True,
you’ll occasionally read a precautionary note about one thing or
another. (And then there are the common-sense precautions: don’t
let the dog chew on your computer; don’t use the computer while
you’re taking a bath; don’t throw it out the window of your tenth-
story apartment; and so on.) But you’ll enjoy your experience
more if you realize that, with normal use, you really can’t hurt the
computer. Certainly nothing you type into the computer will ever
damage any of the hardware. You may make mistakes resulting
temporarily in incorrect answers or lost data; but once you’ve rec-
ognized such mistakes, chances are you’ll be able to correct them.
Mistakes are part of the learning process; the computer always
forgives. '

We’ve looked at the main computer unit; let’s find out what the
attachments do.

THE SUPPORTING ROLES

The TV Set

You should be able to attach any television set that you have
around the house to your T/S 1000. A small, portable, table-top
model would be most convenient, but whatever kind you have
should work.

The role of the TV is, in short, to tell you everything you need
to know about the computer’s activities. When you type commands
on your keyboard, you will see these commands displayed on the
screen before you instruct the computer to perform them. Often

The Cast of Characters 7

you’ll write a series of commands that you will want to submit to
the computer all at once, for sequential performance. Such a series
of commands is what we call a program. Before you instruct the
computer to perform the commands of a program, you can display
the program itself, line by line, or section by section, on the screen.
You can leave the program on the screen for as long as you want, so
you can study it and make sure it’s right. This display of a program
is called a listing. If you find an error in your program you can edst
the part of the program that is incorrect; the steps of the editing
process will all be displayed on the screen for you. Finally, when
you run your program (that is, when you tell the computer to per-
form the commands of the program) you will in most cases see the
results on the TV screen. The results may be numerical, textual, or
even pictorial, because the T/S 1000 has two kinds of graphic
capabilities.

Of course, the computer is always in control of what is displayed
on the screen. Once you get used to reading the information that
the computer puts on the screen, you will begin recognizing some
fairly subtle symptoms of the computer’s activity. For example,
you’ll be able to tell from the organization of the screen informa-
tion when the computer is running short of memory space. The
computer will also display screen messages—which you’ll have to
learn how to interpret—telling you when you’ve made a mistake.
In most cases you’ll know exactly where the mistake is and why the
computer didn’t like it.

If the keyboard is your means of communicating with the
computer, the TV screen is the computer’s most important and
complete means of giving information back to you. At first you
may find that there’s too much information on the screen for you to
absorb, but you will quickly get used to understanding the more
subtle signs and symptoms displayed on the screen, and you will be
able to concentrate your attention on the information that the com-
puter is giving you.

In addition, when you write a program, you will have a good
deal to say about where and how the computer places information
on the screen. Several of the commands you can give the computer
are directly involved with the appearance and position of numbers,
text, and graphics on the screen.

Your computer connects to the television set via the small
silver-colored box that came with the computer, the RF modulator

8 Your Timex Sinclair 1000 and ZX81

(or “switch box”). Leading out of one side of the box is a wire that
ends in a pair of U-shaped connectors. These attach to the TV.
Look at the back of your TV set and locate the two pairs of screws
labeled UHF and VHF, respectively. For the T/S 1000, you’ll want
to connect the RF modulator to VHF. Loosening the two screws,
slip the U-shaped connectors beneath them, and then tighten them
again.

On the face of the RF modulator is a switch that slides up and
down. The upper position is labeled “TV”’, and the lower will be
labeled either “computer” or “‘game”. When you want to use your
T/S 1000, you’ll have to make sure the switch is in the lower posi-
tion. The upper position allows you to watch TV without detaching
the RF modulator.

Finally, on one end of the RF modulator is a jack similar to the
TV jack on the side of your computer. This is where you plug the
long cord leading from the computer. When this is done, the TV
connection is complete.

You can turn your TV to either channel 2 or channel 3. On the
underside of your computer you’ll find a switch that must be set to
correspond to the TV channel you have chosen. In general, it’s
probably best to use the channel that is not used for TV broadcasting
in your area, but you can try both channels and choose the one that
seems to give you the clearer picture.

"~ Now switch on the TV, with the volume control turned all the
way down. Plug in the adapter that supplies the power to the com-
puter. Insert the small plug on the other end of the adapter cord
into the “9V DC” jack on your computer. If all the connections are
made correctly you should see a small K in “reverse video” (i.e.,
white on black) at the lower-left corner of the screen, as shown in
Figure 1.4. This K, which stands for “keyword,” tells you that the
computer is ready to accept commands. You can adjust the bright-
ness and contrast controls on your TV to get the best picture possi-
ble. (These settings will not always be the same as you like to place
them for watching television.) If you’re not satistifed with the pic-
ture, even after adjustments, try the other channel to see if it is
better.

If you’re not getting the picture at all, then check over all the
connections:

® The computer’s power adapter should be plugged into the

The Cast of Characters 9

wall outlet; the small plug on the other end of the cord
should be inserted in the “9V DC” jack at the side of your
computer.

® The U-shaped connectors of the switch box must be attached
to the VHF (not the UHF) screws at the back of your TV set,
and the switch should be set for computer use. The long cord
should be plugged securely into both the switch box and the
TV jack on the side of the computer.

® The TV channel you are tuned to (either 2 or 3) must corres-
pond to the setting of the switch located on the underside of
the computer.

With the TV attached to your working computer, you are
ready to start writing commands and experimenting with the power
of the T/S 1000. In fact, you may well decide not to connect any
other equipment to the computer at the beginning. You canlearn a
lot about your computer with nothing other than a TV set to show
you what the computer is doing.

Figure 1.4: Turning on the Computer: The K Cue

10 Your Timex Sinclasr 1000 and ZX81

Eventually, however, as you grow into the computer experience,
you will probably want to add other capabilities to your system. You
may want to add extra memory to the computer, in order to write
longer programs. You may also want to start saving your programs
in some permanent form—or you may want a convenient way of
running other people’s programs on your own computer. Or, fi-
nally, you might want to record some results from the computer
onto paper. The following sections of this chapter describe the differ-
ent pieces of equipment that allow you to do all these things.

Extra Memory

The computer has two kinds of memory; one kind is permanent
and the other is temporary. You may already be familiar with the
names of these two kinds of memory: ROM (for Read Only
Memory) and RAM (for Random Access Memory), respectively.
ROM, the permanent memory, stores all the information that de-
fines the “personality” of the T/S 1000. This information deter-
mines what commands you can give your computer, and how the
computer will interpret and carry out your commands. The infor-
mation in ROM is never lost, even when you turn off the power of
your computer.

The other kind of memory, RAM, stores information about the
current activities of the computer. For example, it holds any com-
mands or any program that you have typed into the computer. It
keeps track of the images that the computer is sending to the televi-
sion screen. It also holds data that you have submitted to the com-
puter, and stores the intermediate and final results of calculations
you tell the computer to perform. RAM, then, is very dynamic; the
information it stores can change from moment to moment. The
most important thing to remember about RAM is this: When you
unplug the power, all the information stored in RAM is lost.

The computer’s memory is measured in units called bytes. A
byte is the amount of memory that the computer requires to store
the information from one keystroke on the keyboard. So if you type
any of the commands or characters printed on the keyboard, the
computer needs one byte to keep track of it.

Now, your T/S 1000 has about 2000 bytes of RAM built into it.
(Actually, we say it has 2K bytes, where the K means 1,024.) You
will see that this is enough memory for you to write short, but

The Cast of Characters 11

interesting and useful, programs for the computer to perform. It is
plenty of memory for you to work with while you are just learning
how to use your computer.

At some point, however, you may begin to wish your computer
had more memory. You may want to write longer programs your-
self, or run very long programs that other people have written. If
you reach this point, you can buy an extra memory module to
attach to your computer. Timex produces a 16K RAM module,
and other companies produce modules that will give you up to
64K. How much memory you need will depend on what you finally
decide you want to use your computer for.

These modules slide into the exposed piece of board at the back
of your computer. If you’ve already bought 2 memory module,
you can attach it right away. (Again, always be careful to unplug
the power before you attach or disconnect a memory module.) All
the programs we will write in this book will fit in 2K of memory;
however, we will discuss some programs you can buy that require
16K.

If you haven’t yet bought an extra memory module, you should
probably wait a while before you decide to buy one. They will al-
ways be available later, and, as we have already mentioned, you
can get a thorough introduction to the capabilities of your computer
simply with the built-in 2K RAM.

A Cassette Tape Recorder

Remember that we defined a program as a sequence of instruc-
tions that you submit all at once to your computer. When you run a
program, you instruct the computer to perform the instructions,
one by one, in some specified sequence. The other point to remem-
ber about programs you write is this: they are stored in RAM, the
temporary memory. This means that if you work on a program and
then disconnect the computer from its power supply—accidentally
or on purpose—the program you’ve been working on will be lost.

But your computer provides a nice solution to this problem.
You can store programs by recording them directly from the com-
puter onto a cassette tape. Then, later, when you want to run a
program again, you can play it back, and the computer will store it
once again in RAM. To be sure, this process requires some rather
careful connections between the tape recorder and the computer;

12 Your Timex Sinclair 1000 and ZX81

we will discuss these connections in Chapter 2. But recording com-
puter programs does not require expensive or sophisticated record-
ing equipment. If you have any cassette tape recorder around the
house, the chances are good that it will work with your computer. If
you don’t have one, you may eventually want to invest in one, but
you should use an inexpensive one.

The Printer

One other piece of equipment that you might consider buying
is the printer designed to be attached to the T/S 1000. Like the
extra memory module, the printer connects to the exposed piece of
board at the back of your computer, and you should unplug the
computer before you attach it. The printer uses rolls of special
paper; the documents it produces, while readable, are only of
medium quality. All the same, the ability to produce a printed
record from your computer may often be a valuable asset.

The computer has several commands that allow you to control
the printer directly from the keyboard. You can, for example, in-
struct the computer to list a program on the printer, or to copy the
entire contents of the TV screen onto paper. You can also write
programs that will send their results to the printer rather than to the
screen. If you decide to buy a printer, you will find that it’s ex-
tremely easy to use for producing all kind of records from your
computer. (Appendix A describes the commands that you’ll use to
work the printer: COPY, LLIST, and LPRINT.)

THE PRODUCER, DIRECTOR, AND WRITER—YOU

Next, we turn our attention to you, and the different roles you
can play in making your computer work for you.

We have seen that your computer is designed to accept and
perform certain commands, which you can communicate to it by
pressing the appropriate keys on the keyboard. If you look at the
keyboard you’ll see that there are five dozen or so different words
that the computer understands. You can think of these words—
along with the specific rules for using them—as a kind of language:
a computer language. This computer language is much simpler than
a human language; it has a very limited vocabulary, and a simple,
regular grammar. For this reason, you’ll have a much easier time
learning it than you would a foreign language like French or Italian.

The Cast of Characters 13

In addition, most of the words in its vocabulary are familiar words
in English. They will be easy for you to remember once you have
learned their new meanings in the context of telling the computer
what to do.

There are many different computer languages. The one that is
built into the T/S 1000—and, in fact, into most small computers—
is called BASIC (an acronym for Beginner’s All-purpose Symbolic
Instruction Code). You’ll be hearing more and more about BASIC
in the next few years. Because it is such an easy language, people
everywhere are learning how to use it to solve all kinds of problems
on computers. Even small children are beginning to learn to write
programs in BASIC in elementary school. Soon, BASIC program-
ming may be as common a home and office skill, as, say, typing or
using a pocket calculator.

BASIC is growing in popularity because it can be used by people
who are not necessarily computer experts. Yet you’ll be surprised
to find out how powerful BASIC is when you use it on your com-
puter. This simple language actually has much in common with
other languages that professional computer programmers use on
much larger computers than the T/S 1000.

The first role you will play with your new computer, then, will
be as a BASIC programmer. When you think of a job that you
want your computer to do for you, you’ll find yourself automati-
cally organizing the job in the following way:

1. You’lldivide the job into a series of elementary steps that the
computer can perform one after the other. These steps may
include calculations, repetitive tasks, or even decisions that
you’ll want the computer to make based on available data.

2. You’ll determine the most efficient way to express these
steps as a series of BASIC instructions. If your program will
be a long one with many instructions, then you’ll probably
start out writing it down on paper rather than typing it into
the computer extemporaneously.

3. Once you have developed a program, you’ll type each line
into the computer. Then you’ll put the program through a
trial run to see if it really accomplishes the job you had
planned for it. If the program performs calculations on
numerical data, you may try it out on several different sets
of trial data before you’re satisfied that it is correct.

14 Your Timex Sinclair 1000 and ZX81

4. If the results of your program are incorrect, you’ll return
once again to the BASIC instructions you have written, and
you'’ll try to figure out what’s wrong. Often the nature of the
incorrect results will tell you right away what the problem is;
at other times the errors will be more subtle and you may
ponder for hours—or even days—before you solve the puzzle
of your own program!

You’ll see your first BASIC program in Chapter 2. Actually,
with this first program you’ll be concentrating more on using the
T/S 1000 keyboard than on the meaning of the BASIC instruc-
tions, but very soon you'’ll be writing your own programs. Notice
that the process of developing a program, in the four steps outlined
above, includes a course of action for detecting and correcting mis-
takes. It is almost inevitable that new programs will start out with
errors in them. This is nothing to be embarrassed about. The T/S
1000 will catch some errors you make as you are writing your pro-
gram. Other errors will appear when you run the program. We
will see that the computer has several ways of helping you to find
and correct errors in your programs.

When you bought your computer, you probably noticed that
you could also buy some programs—written by other people—that
were designed for use on the T/S 1000. These programs are stored
on cassettes, and all of them are fairly expensive. But this is another
way you can use your computer—by running other people’s pro-
grams on it to perform specific tasks. In Chapter 2 we will discuss
some of the advantages and disadvantages of purchasing programs
(as opposed to writing them yourself). For now, you may be asking
yourself the following question: Why should you go through the
trouble of learning to program in BASIC if programs have already
been written that you can simply buy and run?

In fact, many people who buy the T/S 1000 computer may
never learn to write a BASIC program. They will always select and
purchase programs from their computer dealers, according to their
specific needs. This is a legitimate use of the computer; you don’t
have to learn to program in order to use your computer successfully.
However, if you never attempt to learn BASIC and write your own
programs, you’ll be missing out on a significant opportunity for
self-education. If you learn to design your own programs, your
computer will become a valuable tool that you can always apply to

The Cast of Characters 15

your own individual computing needs. In addition, the process of
learning to program a computer will give you new insight into an
instrument that is becoming increasingly important in our society.

SUMMARY

To communicate with the computer, we need to attach input
and output equipment. On the T/S 1000, the major input device is
the built-in keyboard. The keyboard conveniently displays all the
commands that you can give your computer, so that each word can
be entered by pressing a single key.

The TV screen is the major output device, and it supplies a
great deal of information about your programs, their results, and
the current action of the computer. In addition, you can attach a
printer to your computer if you want more permanent output
records.

A simple cassette tape recorder can also be connected to the T/S
1000 when you want to save programs that you have written, or
when you want to run programs that you buy. Finally, extra
memory modules are available to increase the temporary memory
capacity (RAM) of your computer.

The words that you see on your keyboard make up the vocabu-
lary of the BASIC language. Learning to program in BASIC,
while not absolutely essential for computer use, is likely to make
your computer experience more efficient and more satisfying.

Chapter 2 '

The First Act:
Enter Your Program

INTRODUCTION

If you’ve followed through the instructions detailed in Chapter
1, then your computer is on, the TV set is attached, and you’re
ready to start to work. The first task ahead of you is learning to use
the computer’s keyboard; that’s the main goal of this chapter.
We’ll begin by taking a slightly closer look at BASIC. We’ll see
what a program looks like, and we’ll discuss, in general terms, the
way a program is organized. Then you’ll enter a short program
into your computer. Along the way, you’ll see how the computer
helps you identify and correct any errors you might make.

Next, you'll see how to use a cassette tape recorder with your
computer. We’ll look in careful detail at the connections you have
to make in order to save programs on a cassette and to load a pro-
gram back into the computer from a cassette. You'll try out the
process by saving the program that you will have typed into the
computer.

This will lead us to a third topic: programs you can buy on
cassette. We’ll look at an example, and then we’ll end the chapter
with a consumer’s guide to buying programs for your T/S 1000.

THE COMPUTER LEARNS ITS LINES

Every good computer must, of course, learn to be friendly, so
the first program we’ll look at will guide the computer through the
following tasks:

1. ask you your name;
2. draw a design on the TV screen;
3. print a greeting on the screen.

18 Your Timex Sinclair 1000 and ZX81

You may consider these somewhat frivolous jobs for a computer
program; but at the moment we’re not worried about usefulness.
The purpose of this program is to give you a thorough introduction
to using the keyboard. By the time you’ve typed in the program,
you will have seen examples of everything the keyboard can do for
you.

The BASIC Computer Language

The “greeting” program is shown in Figure 2.1. Take a mo-
ment to study it before you begin typing it into your computer. You
can learn a lot about the BASIC language just by looking at a
BASIC program.

We learned in Chapter 1 that BASIC has a very limited vocab-
ulary, mostly made up of familiar words in English. Indeed, the
greeting program has only a few words that seem to be written in
some kind of abbreviated shorthand (CLS, LEN, CHR$); most of
the other words are familiar enough. This doesn’t mean that you

N%g PRINT AT 21,0; "UHAT IS vour
INPUT N$
CLS
FAST

FOR I=1 TO 224
;NS (1)

9, ** HELLH
TO LE

PRINT CHR$ (CODE NS(Il+128)

'100 NEXT I ,
110BPRINT * xx°

Figure 2.1: The Greeting Program

The First Act: Enter Your Program 19

can immediately understand what each line of the program will do;
but at least you can see that the program does not, after all, appear
very intimidating.

What does this program tell us, then, about the characteristics
of BASIC? First, a BASIC program is organized into lines, and
each line is numbered. This program has 13 lines. The length of a
program can vary from a single line to hundreds of lines, depending
on the task it is designed to accomplish.

The lines in this program are numbered from 10 to 110, but
notice that the intervals are not regular. Most of the line numbers
increase by increments of 10, but some increase by 5. When you
write a BASIC program, you are free to number the lines in any
way you want. To the computer, the only significance of the line
numbers is that they indicate the order in which the lines should be
dealt with. This program could have been numbered from 1 to 13
or from 100 to 1300, and the computer would still have accepted it.
The advantage of incrementing the lines regularly, say by 10, is
that once you have written a program you will often want to add
lines to it—second thoughts—somewhere in the middle. This is
easy to do, as long as your numbering system leaves “room” for
extra lines. For example, lines 35 and 65 of this program were
added after the rest of the program was written.

Two of the numbered lines in this program—10 and 90—
happen to take up more than one line on the TV screen. This is
perfectly all right. The computer organizes the information on the
screen so that each screen line can hold up to 32 characters, but a line
in a BASIC program can be much longer than that. When a pro-
gram line exceeds the number of characters available on a screen
line, it is simply continued on the following screen line. This can
produce some unusual cuts in the lines of a program—for example,
the last character of line 90, a semicolon, had to go by itself on the
next screen line—but it doesn’t affect the way the computer reads
and executes the line.

The first word of every line in a T/S 1000 BASIC program is
always a keyword. The keywords tell the computer what kind of
instruction is coming up. Each keyword must be followed by its
own particular “grammar”’; that is, the computer knows what kind
of instruction patterns to expect after each keyword. There are 26
keywords on your keyboard, located above each of the letter keys.
Figure 2.2 shows the location of the keywords.

Your Timex Sinclasr 1000 and ZX81

20

spiom@ay oy g g andty

EWhZW.E!EE!Ea!

The First Act:Enter Your Program 21

When you type a numbered line of a BASIC program into your
computer, the computer stores the line in its memory and displays
the line on the screen for you. It does not begin performing the
instructions of your program until you tell it to do so. It merely
keeps track of the program, and waits for you to tell it what to do
next. We'll see how this works after we’ve described how to enter
the program.

The Keyboard—Keywords and Modes

At the moment, your screen is blank except for the reverse-
video K in the lower left corner. You’ll recall that the K stands for
keyword. This cue (referred to as a cursor in your user’s manual) is the
computer’s way of telling you that it is ready to accept any keyword
from the keyboard. When you start typing in the program, you’ll
see other cues—including L, G, F, and S, all in reverse video.
These cues tell you what “mode” the keyboard is in—that is, what
kind of words or symbols you can enter next into the computer.

We’ll go over each line of this program keystroke by keystroke;
you should type the lines one by one as you read the descriptions.
(You’ll also read a brief, general explanation of what each line does;
but, for the moment, concentrate on the keyboard, not on the
meaning of the lines. You’ll have plenty of time to master BASIC
later, after you’ve learned how to use the keyboard.)

Entering the Program, Line by Line

The first line of the program is a PRINT instruction. PRINT
tells the computer to display some information on the TV screen.
In this firstline, PRINT is followed by the word AT, which is one of
several possible ways of specifying exactly where on the screen you
want information to be displayed. The “information” in this case is
a question, WHAT IS YOUR NAME?, which appears within
quotes at the end of the PRINT instruction.

So let’s type the line. If you’ve typed anything at all on your
computer yet, you will have noticed that the keys don’t require
very much pressure to register. Just a light touch is all that’s
needed. You’ll have to watch the screen as you type, however, to
make sure each key you’ve touched has in fact sent its message to
the computer.

As we’ve seen, the first thing you have to type at the beginning

22 Your Timex Sinclasr 1000 and ZX81

of each line of your BASIC program is the line number. For the
firstline, type the digits 1 and 0. As you enter each character, you’ll
see that the K cue moves one space to the right, and the digits
appear to its left.

Next, find the PRINT command. It’s located above the [P] key
(at the far right of the keyboard, the second row down). Touch the
key and see what happens on your screen. The whole word PRINT
appears at once on the line. Also, the reverse-video cue changes to
an L. This tells you that you have left the keyword mode and are
now in the letter mode; the next key you press will register as a letter
or a digit, not a keyword.

To enter any keyword, then, all you have to do is press the
single key on which the keyword is displayed. In fact, you cannot
type out the letters of a keyword. If you were to type the letters, P-
R-I-N-T, the computer would not recognize it as the keyword
PRINT. Whenever entering a keyword is correct in the special
grammar of BASIC, the computer tells you by displaying the [K]
cue. If you don’t see the reverse video K, you know that you can’t
enter a keyword.

The next word in the first line is AT. AT is one of 25 functions
available on your keyboard. The functions appear beneath all of
the letter keys (except the [V] key). They are shown in Figure 2.3.
Some of these functions are genuine mathematical functions, such
as sine (SIN), cosine (COS), and the natural logarithm (LN). If
you intend to use your computer for scientific or mathematical
applications, you undoubtedly already know about these functions.
Other functions on your keyboard are not mathematical at all. You
might think of them as programming functions, because once you
know how to use them, they will simplify many programming
tasks. AT, for example, is a “function” that allows you to specify,
very conveniently, the location of information placed on the screen.

All the functions—mathematical or otherwise—have one thing
in common. To type a function, you have to “shift” the keyboard
into the function mode. To perform this shift, you press two keys at
once:

¢ the SHIFT key, located at the lower left corner of the key-
board, and

¢ the FUNCTION/ENTER key, located at the right of the
keyboard, just below the [P] key.

23

The First Act: Enter Your Program

suonoung ayJ ig°g aandig

v FAIA NI

NOS NY1048Y SO0 NISOYY

Iu»Zw.E!EE!EBH

_Jf of 'f of A if df 3§ MF O
o) of o) :f of <] vQ cf ¢ !

24 Your Timex Sinclair 1000 and ZX81

First hold one finger down on the SHIFT key, then touch the
FUNCTION key, and watch what happens on the screen. The
reverse-video cue changes from an L to an F. You are now in the
function mode. You can press any of the letter keys that have func-
tions below them, and the function will appear on the screen as part
of your BASIC line.

Locate the AT function on your keyboard. It’s below the [C]
key. Press the key, and AT becomes part of your line. Your line
now reads: :

10 PRINT AT

Notice that the reverse-video cue has once again changed back to
anL.

Like the keywords, the functions must be entered as single key-
strokes. Typing the letters A-T in the letter mode would not mean
the same thing at all to the computer as typing the AT function in
the function mode.

Next we have two numbers to type onto our line. As you may
have guessed, these numbers represent the “address” on the screen
where the computer will print the message. (The numbers 21,0
mean row 21, column 0; we will see exactly how this works when
we study the AT function, in Chapter 3.)

Before we go any further with the typing, we should find out
what to doin the event of a typing error. Such errors are inevitable;
perhaps you have made one already, and are a little confused
about what to do next.

The computer gives you a very easy way to “erase” anything
you type on a line. Again, it involves pressing two keys at once:

¢ the SHIFT key, and
® the [0] (zero) key.

You should notice two things about the [0] key, at the upper right
corner of the keyboard. First, to distinguish the digit 0 from the

letter O, the zero has a slash through it. (The slash also appears on
the screen.) Second, the zero key has the word DELETE written,
in red, above the digit. So, pressing SHIFT and DELETE at the
same time, you can “erase” any mistakes that you might make
while you are typing.

Try it once now. Type some letter that doesn’t belong on your

The First Act:Enter Your Program 25

line. Then press the SHIFT key down with one finger and touch
the DELETE key with another. Notice what happens on the screen.
The L cue backs up over the unwanted letter. The letter is gone,
and you can continue on with your typing.

Now type the two numbers, starting with 21. The 21 is followed
by a comma (,) and the 0 by a semicolon (;). This punctuation,
though it may not make immediate sense to you, is an essential part
of the meaning of the line, so it has to be typed correctly. The
comma is located in the lower right area of the keyboard, on the
same key as the period (). The semicolon is located on the [X] key.
Both the comma and the semicolon appear in red on your keyboard.

In fact, every key on the keyboard has a character or word that
is printed in red. We will refer to these as the “shift” characters. To
type them, you must first hold the SHIFT key down, and then,
with another finger, touch the appropriate key. All of the shift char-
acters are shown in Figure 2.4.

Try typing the comma. If you should get a period at first instead
of a comma, it means that you’re not pressing the shift key quite
hard enough (or in exactly the right place). Delete the period
(SHIFT-DELETE) and try again. Then type the zero and the
semicolon, to complete the address. The line on your screen should
now be:

10 PRINT AT 21,0;

The rest of the line is the actual message that will be printed on
the screen when the computer performs this PRINT instruction.
‘The message is between quotation marks. The quote character is
on the [P] key; it is a shift character. Press SHIFT-P; the quotation
mark should appear on the screen. Now type the message: WHAT
IS YOUR NAME, letter by letter. (The space key is in the lower
right corner of the keyboard.) You'll notice when you type the N of
NAME that you have run out of room on the screen line. When
you type the A, the computer automatically moves you down to the
next line. The message ends in a question mark, which is a shift
character located on the [C] key.

Before you type the ending quotation mark, we’re going to
experiment with another special feature of your computer. Nor-
mally, you would finish typing the line, and then press the ENTER
key to tell the computer that the line is complete. Now, however, to
see what happens when you make a mistake, press ENTER before

Your Timex Sinclair 1000 and ZX81

26

suaqmavy) Yfiyg vy p-Z aundry

M D D D S D
D) G D
NOLLINNY = + *¥ 1SIM 1Sv4 MO1S ANIHdT d0OiS

L df of . NQ AN LR UR IQ MJ.D
=< <> => d31S
I

The First Act:Enter Your Program 27

you type the last quotation mark.

Automatic Error Detection

What you’ll see on the screen after you press ENTER is shown
in Figure 2.5.A new cue has appeared next to the L cue. The S cue
stands for syntax error. The word syntax refers to the rules of the special
“grammar” that you must always follow when you write a BASIC
program. When you write a line that breaks one of these grammar
rules, the computer notices it right away, and refuses to accept the
line as part of a program. The S cue is the computer’s gentle way of
telling you that you’ve done something wrong; you have to take
another look at the line in question.

Of course, since you made this particular mistake intentionally,
you know exactly what is wrong. The final quotation mark is miss-

- ing. Now, when you type the quotation mark (SHIFT-P), the S cue
disappears, and your line is complete. Press the ENTER key again
and watch what happens. Figure 2.6 shows the results. The correct
program line moves to the top of the screen. This means

10 PR
FIME‘?NT AT 21,0; "WHAT IS YOUR N

Figure 2.5: The computer responds to a syntax error.

28 Your Timex Sinclair 1000 and ZX81

that the computer has stored it away in its memory as the first (and
currently, the only) line of a program. The K cue has reappeared in
the lower left corner of the screen, telling you that the computer is
now ready for your next instructions.

The Second Line: Using the Editor
Now let’s type the second line of the program, line 20:
20 INPUT N$

The keyword INPUT tells the computer to interrupt the perform-
ance of a program, temporarily, and wait for you to type some
information on the keyboard. Using the INPUT command in your
program, you can create a kind of dialogue between the computer
and the person using the computer. You’ll see exactly how this
process works, a little later, when you finish typing this program
and then run it.

The characters N§ after the keyword INPUT represent what
we call a variable name. Don’t let this terminology intimidate you. A

10BPRINT AT 21,0;
NAME? "

“"UHAT Is YOUR

Figure 2.6: Entering a Program Line Correctly

The First Act:Enter Your Program 29

variable is simply a place that the computer reserves in its memory
for a specified type of information. You can define many variables
for use in a program, but you must give a name to each one; the
computer can then keep track of the variables by name. The data
contained in a variable can change many times during the course of
a program—that’s why it’s called a variable—but the name never
changes.

When the computer performs the instruction INPUT N$, it
first waits for some kind of data to be input from the keyboard.
When the data arrives, the computer stores it in a variable that it
gives the name N§. Henceforth, whenever you refer to the name
N$, the computer will know that you are interested in the data
stored in that variable.

You can define two types of variables for use in a program—
variables destined to store numerical data, and variables for tex-
tual (nonnumerical) data. In computer parlance, we call a nonnu-
merical data item a string. To define a string variable, you have to
specify in the name of the variable that you want the computer to reserve
memory space for a string. You do this by adding a dollar sxgn $)to
the end of the variable name.

So, once again, INPUT N§ tells the computer to accept a string
from the keyboard and to store that string some place in its memory
under the name N$. If the concept of a variable still seems a bit
hazy to you, don’t worry too much about it at this point. We will
review it again later on. Remember that our primary goal right
now is to learn to use the keyboard. The reason for discussing vari-
able names at this point is actually to help you understand another
error-checking feature of your computer—the editor.

When you type line 20 into your computer, type it, at first, as
follows, with the intentional omission of the “$” character:

20 INPUTN

Grammatically, this is a perfectly good instruction. It says, “accept
some numerical data from the keyboard, and store it in memory
under the name N.” Numerical data, because the character “$”,
which indicates a string variable, is missing from the variable
name. Enter the line this way for now. The keyword INPUT, by
the way, is located above the [I] key. Type the line, and press the
ENTER key. The line will jump to the top of the screen, just below
line 10.

30 Your Timex Sinclair 1000 and ZX81

Often while you’re writing a program, you’ll make a mistake
like this. You’ve entered a perfectly good line into your program,
but it’s just not the line you wanted. Since the line is a good one
grammatically, the computer has no way of knowing that there’s
anything wrong, so it accepts the line exactly as it is written. Once
the line is entered, and you examine the program on the screen,
you will probably recognize the error and want to change it. The T/
S 1000 computer supplies an extremely simple way to correct such
errors. This feature is called the editor.

Since the line that you want to edit is the line that you entered
most recently, you can use the editor directly. Find the word EDIT
on your keyboard; it is located on the [1] key. EDIT is printed in
red, so you know that it requires a shift. Hold the SHIFT key
down, and then touch the EDIT key. Figure 2.7 shows what will
happen on your screen.

You can see that a copy of the line has been moved back down to
the bottom of your screen, the area where all new lines appear as
you type them. The K cue appears inside the line, just after the

INT AT 21,0;"
10 PR »9; "UHAT 1S YOuRr
20BINPUT N

20@ INPUT N

Figure 2.7: Editing the Most Recently Typed Line

The First Act:Enter Your Program 31

line number. You can now use the left- and right-arrow direction
keys (SHIFT-5, and SHIFT-8, respectively) to move the cue back
and forth in the line. For deletions, you can move the cue to the
immediate right of the character or word you want to delete, and
then press SHIFT-DELETE, just as though this were a new line.

In this case you want to add a character to the line, specifically
the § character at the end of the variable name. Press SHIFT-8
(that is, the SHIFT key and the [8] key together) twice to move the
cue to the correct position, just after the N. The dollar sign is also a
shift character, located above the [U] key. Press SHIFT-U to add
the character to the line. Then press ENTER to reenter the edited
version of the line. You will see the corrected line appear at the top
of your screen. And, once again, the K cue appears at the lower left
corner; the computer is ready for your next command.

Up to now you’ve entered only two lines of the program, but in
the process you’ve learned a lot about your keyboard and your
computer. Let’s review briefly what you’ve learned:

® When you first begin typing a line into your computer, it
appears at the bottom of your screen. If you make a typing
error at this point, you can “erase” the previous keystroke
by pressing the SHIFT key and the DELETE key at the
same time.

® ‘The first word of every line is a keyword, which you enter in
a single keystroke. Afterwards, the cue changes to a reverse-
video L, for ltter mode. If you want to enter a function, you
must first shift to the function mode by pressing SHIFT-
FUNCTION. All the functions are also entered with a single
keystroke. ‘

® All the characters and words that appear in red on your key-
board are shift characters. To type one of them, you must
first hold the SHIFT key down and then press the appro-
priate key.

® When you have completed a line, you press ENTER to tell
the computer to store the line as part of the program. If the
line contains no syntactical errors, it will move up to the top
of the screen, with the rest of the program listing.

® Ifyou try to enter a line that has a syntax error, the computer
will find the error and display the S cue to tell you where the

32 Your Timex Sinclasr 1000 and ZX81

error is. You can use the left- and right-arrow keys (SHIFT-
5, SHIFT-8) to move the cue around inside the line, and the

DELETE key (SHIFT-0) to “erase” any errors. You can
also add words or characters if necessary.

® To correct an error in a line that has already been entered
into the program, you use the edit feature, which is invoked
by typing SHIFT-1.

We will move more quickly through the remaining lines of the
program, but you should remember to practice using the com-
puter’s error-correction features whenever you need them. When
you finish, your screen should look like the program listing in
Figure 2.1.

Finishing the Program

The next two lines, 30 and 35, each consist of one-word instruc-
tions. Line 30 is:

30CLS

The keyword CLS, which is located above the [V] key, instructs
the computer to clear the screen of all information. The instruction
in line 35 puts the computer in the fast-calculation mode (which we
will discuss in Chapters 3 and 4):

35 FAST

The word FAST is a shift character, located on the [F] key.

The next three lines, 40 to 60, work together to instruct the
computer to repeat a certain task many times. We call the action
resulting from this series of lines a logp, because the computer per-
forms the lines, and then loops back to perform them again and
again. The keywords that define this kind of loop are FOR (line 40)
and NEXT (line 60). In this particular example, the task to be
repeated is defined in a single line (line 50), but it is possible to
construct a loop that repeats many lines. The end of the loop is
always marked by the NEXT line. The FOR line, in addition to
indicating the starting point of the loop, specifies exactly how
many times the task should be repeated. We will examine the syn-
tactical details of the FOR/NEXT loop in Chapter 3.

When you see the results of this program, it probably won’t be

33

The First Act: Enter Your Program

saapomavy?) Sovydoan) ayy :9°z undiy

BEIDDEDDEREDS
B B B i G GR) GE) G G G

_df Of '] NJ=AJoLQuugaigahyeo
i 1 G R GE) B G2 G G2 G

34 Your Timex Sinclair 1000 and ZX81

at all difficult for you to guess what the repeated task is. Enter line
40:

40FOR! = 1 TO 224

The keyword FOR islocated above the [F] key. The equal sign (=)
and the word TO are both shift characters, located on the [L] key
and the [4] key, respectively.

Line 50 presents yet another new feature of the keyboard. Look
back at line 50 in Figure 2.1 to see what this new feature is. The line
consists of a PRINT instruction. After the keyword, PRINT, there
are two graphucs characters, between quotation marks. The T/S 1000
computer has 20 graphics characters, which can be displayed in
any combination and at any location on the TV screen. On the
keyboard, these characters are located on the first eight digit keys
and on twelve of the letter keys, as shown in Figure 2.8.

To type these characters, you must first shift into the graphics
mode. Begin the line by typing the line number, the keyword, and
the opening quotation mark:

50 PRINT “

The L cue tells you that you are currently in the letter mode. To
shift into the graphics mode, press the SHIFT key and then touch
the [9] key with another finger. (Notice that the [9] key has the
word GRAPHICS, in red, above the 9.) When you do this, the cue
will change to a reverse-video G, telling you that you are now in the
graphics mode.

All the graphics characters on your keyboard are shift characters.
The two that you want for this line are located on the [S] key and on
the [H] key. Start by pressing SHIFT-S. The character will appear
on the line, and the computer will remain in the graphics mode.
Now press SHIFT-H for the second character. Figure 2.9 shows
what your screen should look like at this point.

To complete the line you now have to shift out of the graphics
mode and back into the letter mode. To do this, simply press
SHIFT-9 again. Just remember that the word GRAPHICS, on the
[9] key, gets you both into and out of the graphics mode.

Back in the L. mode, you can finish typing the line by entering
the following sequence of characters:

“;N$(1);

The First Act: Enter Your Program 35

All the punctuation is important, so don’t miss any of it. The 1 in
parentheses after N§ refers to the first character of the string stored in
the variable N$. (You'll recall this when you see the results of the
program.) The open and close parentheses are both shift characters,
located on the [I] key and the [O] key, respectively.

Line 60 completes the loop:

60 NEXT 1

"The keyword NEXT is located above the [N] key. Line 65 puts the
computer back into the slow-calculation mode, which we will discuss in
Chapters 3 and 4:

65 SLOW

The word SLOW is a shift character, located on the [D] key.

Line 70 once again makes use of the T/S 1000’s special graphics
capabilities. The graphics mode allows you to type reverse-video
characters, in addition to the 20 special graphics characters. To see
how this works, begin by typing the first part of the line:

70 PRINT AT 9,7;“ « »

(After the opening quotation mark, there is a space and then two
asterisks. The asterisk is a shift character, located on the [B] key.)
Next shift into the graphics mode (SHIFT-9), and type the word
HELLO, without pressing the SHIFT key. You’ll see that the entire
word appears in white characters against a black background—
that is, reverse video. Now type the space key; a reverse-video
space is simply a black square. The space is the end of the message,
so shift out of the graphics mode, and type the last two characters of
the line—the ending quotation mark, and the semicolon. Press
ENTER to make the line part of your program.

The next three lines of the program—80 to 100—make up
another FOR/NEXT loop. By now, you should have no trouble
typing the lines in. They use three new programming functions, so
you’ll have to shift into the function mode three times. Line 80 uses
the LEN function, located beneath the [K] key:

80FOR! = 1 TO LEN N$

36 Your Timex Sinclarr 1000 and ZX81

The LEN function supplies the lngth, in characters, of a string.
Line 90 uses the CHR$ function (beneath the [U] key) and the
CODE function (beneath the [I] key):

90 PRINT CHR$(CODE N$(l) + 128);

This is perhaps the most complex instruction in the program.
Briefly, it converts the characters of the string N§ into their reverse-
video equivalents. We will study the CHR$ and CODE functions
in Chapter 5. Line 90 contains another new element: the plus sign
(+). This is a shift character, located on the [K] key.

Line 100 ends the FOR/NEXT loop:

100 NEXT |
And, finally, line 110 is another PRINT instruction:

110 PRINT “ »»*

1@ PRINT AT 21,0; "UHAT IS YOUR
NAME?"

20 INPUT N$

30 CLS

35 FAST

40HFOR I=1 TO 224

SO PRINT "“yR

Figure 2.9: Typing the Graphics Characters

The First Act: Enter Your Program 37

Notice that there are three characters within the quotation marks:
first a space, then two asterisks.

You have now typed the entire program into the computer, and
you’re ready to see what it does when the computer performs its
instructions. Before you run the program, though, do two things.
First, compare your screen carefully, line by line, with the listing of
the program shown in Figure 2.1. Make sure each character is
exactly right. If you should find any errors, it’s not hard to correct
them. Skip ahead to the section of this chapter called “Editing Any
Line of the Program,” where you will see how to make additional
changes in your program. (You already know how to use the editor;
all you have to learn is how to specify which line you want to edit.)

The second thing to do before you run the program is review
carefully all that you have learned about the modes of the key-
board. Study Figure 2.10, which summarizes all the different cues
for you.

ACTION!

The keyword RUN, located above the [R] key, tells the com-
puter to begin executing the instructions of the program in its
memory. When you run this program that you’ve worked so hard
to enter into the computer, you will probably recognize the source
of at least part of the action in some of the more understandable
lines you typed. At this point, since you have not studied BASIC
yet, your idea of how the program works will be impressionistic
rather than systematic. But still, you may be surprised at how accu-
rately you can guess the meaning of most of the lines of the program
once you have seen what they do.

Your Conversation with the Computer

Type the RUN keyword directly, without typing a number
before it. Press the ENTER key and watch what happens.

For the first time, the listing of the program lines has disap-
peared from the screen. Of course, the lines are still stored in the
computer’s memory, but now the screen is needed to display the
results of the program.

The action takes place in two distinct steps, as you will soon see.
In the first step, the question:

38 Your Timex Stnclair 1000 and ZX81
WHAT IS YOUR NAME?

appears on the screen. The L cue, between quotation marks, is
printed below the question. This tells you that the computer is
waiting for you to type an answer on the keyboard. Go ahead and
type your name. (Figure 2.11 shows how it will look, with the name
HILDA.) If you make a mistake while you’re typing, you can use
the DELETE key (SHIFT-0) to erase the mistake, just as you did
when you were typing the program.

When you have typed your name, press the ENTER key. The
screen will go blank for a few moments, and then ... well, you’ll
see. (Figure 2.12 shows the greeting to Hilda.) Notice the clever
way the computer has incorporated the initial of your name into
the background design.

Before continuing, you should pause to reflect for a moment on
the illusion created by your program. It looks as though the computer
has asked you a perfectly civil question, has absorbed your answer,
and now has produced a somewhat extravagant, but correct—and

B THE EEYUWORD MODE. (THE COM-
PUTER PUTS YOU IN THIS HODE
UWHENEUVER A KEYWORD IS OK.)

W THE METTER MODE. (PRESS
SHIFT TO TYPE THE RED
CHARACTERS ON THE KEYBOARD.)

@ THE EUNCTION MODE. (SHIFT-

ENTER. FUNCTIONS ARE LOCATED
BENEATH LETTERS ON KEYBORARD.)

B THE ERAPHICS MODE. (SHIFT-9.
REVERSE VUIDEO OR SPECIAL
GRAPHICS CHRRACTERS.)

B FOR BYNTAX ERROR. (DISPLAYED
UHEN THE COMPUTER FINDS R
MISTAKE IN A LINE YOU ENTER.)

Figure 2.10: The Modes and Cues

The First Act: Enter Your Program 39

seemingly intelligent—response. Of course, you know now that
this “dialogue” was something of a fake, in that each detail of the
action was completely controlled by the program you typed into the
computer. The computer doesn’t care a bit what your name is, and
has no urge whatsoever to be friendly. But you can create the llu-
sion of friendliness—or of any other kind of reaction—by the way
you write your programs. What’s more, the fact that a program
exists at all, somewhere behind the scenes, is completely invisible to
the person who answers the question displayed on the screen. (Just
as an experiment, run the program again for someone else and see
how the person reacts.) Creating this illusion of intelligence—of
responding correctly to human input—is an essential part of what
computer programming is all about. The computer can do nothing
without your detailed instructions to guide it; but, ironically, if you
learn to write clever programs, the cleverness will be attributed to
the computer. No one will know that the program is there at all.
Returning to the TV screen, take note of a short message
that appears in the lower left corner. The computer has finished

UHAT IS YOUR NAME~?
“HILORM"

Figure 2.11: Answer a Question on the Screen

40 Your Timex Sinclair 1000 and ZX81

executing all the lines of your program now, and the numbers in
the corner represent a kind of status report on the results of the
program:

0/110

In later chapters we will look in detail at the kind of information
this report can give you. In this case, the zero means that the entire
program was completed, and no special problems arose during the
performance. The number 110 tells you which line was the last to
be executed.

EDITING ANY LINE OF THE PROGRAM

If you have finished admiring the computer’s lovely greeting,
press the ENTER key now. The greeting disappears, and the list-
ing of the program returns to the screen. You can run the program
as many times as you want—always by entering the keyword
RUN; the computer will never get tired of it.

You can also revise the program, if you wish. You can do this

i

H
AN
H
i)
7

Figure 2.12: The Computer’s Greeting

The First Act: Enter Your Program 41

in several different ways, depending on the kind of revision you
want to make: -

® You can add a new line, simply by typing it into the
computer, making sure you give it a line number that isn’t
already taken by one of the other lines in the program.

® You can delete any line by typing its line number and then
the ENTER key. (Knowing this, you should take care not to
delete aline accidentally by typing a number that happens to
be a line number in your program.)

® You can completely rewrite an entire line by typing a new
instruction with the same line number. The old line will dis-
appear, and the new one will take its place.

® Finally, if you have only a small change to make in a line,
you can edit the line. We’ll try doing this now.

“ You may have noticed a small detail in the program listing that
we haven’t mentioned up to now: the small reverse-video arrow
that points to the last line you entered into the program. If you
typed the lines of the program in sequence, this arrow now points to
line 110. (You can see the arrow in Figure 2.1.) The arrow indicates
the current line—that is, the line that will be edited if you press the
EDIT key. You can move the arrow up and down the program
listing by pressing the up and down direction arrows on your key-
board (SHIFT-6 and SHIFT-7).

Let’s say, for example, that you would like to make a change in
the greeting that the computer displays on the screen. You want to
change the word HELLO to HOWDY. This part of the greeting is
in line 70 of the program, so that’s the line you want to edit.

If the current-line arrow is pointing to line 110, you need to
move it up four lines in order to edit line 70. Here are the steps you
will follow: ‘

1. Press one finger down on the SHIFT key; then press the [7]
key four times. Each time you press it, the listing will be
reprinted on the screen and the arrow will move up by one
line.

2. Now, with the arrow pointing at line 70, press the EDIT key
(SHIFT-1) and a copy of the line will move down to the
bottom of the screen, ready for editing.

42 Your Timex Sinclair 1000 and ZX81

3. Using the right-arrow key (SHIFT-8), move the L cue to the
right of the letter O in HELLO. Press the DELETE key
(SHIFT-0) four times to delete four letters.

4. Shift into the graphics mode (SHIFT-9) and type the new

- letters —OWDY.

5. Finally, shift back out of the graphics mode (SHIFT-9
again) and press the ENTER key. The revised version of
line 70 will appear as part of the program listing.

Run the program now to make sure it still works. Everything
should be the same, except that HOWDY will replace HELLO in
the greeting.

An additional note about moving the current-line arrow in the
program listing: When you are working with a very long program,
you may want a faster way to move the arrow from one line to
another, especially if the lines are far apart. In this case you can use
the keyword LIST. Let’s say you want to move the arrow to line
40. Enter the command:

LIST 40

Your program will be listed on the screen from line 40 on. Now
type the EDIT key, and a copy of line 40 will be moved to the
bottom of the screen for editing.

FOR THE NEXT PERFORMANCE...

In Chapter 1 we discussed the need for a cassette tape recorder
to provide a permanent storage medium for programs. You’ll re-
call that programs are stored in the computer’s temporary mem-
ory, and thus are lost when you unplug the computer.

In this section, you’ll learn how to use a cassette recorder with
your computer. If you have a recorder, get it ready. We’ll go
through a practice recording session with the greeting program.

Saving Your Program on Tape

Find the short cord that has a pair of plugs on either end. The
reason it has two plugs is to allow you to connect both the earphone
and microphone jacks of your tape recorder to your computer at
once. In fact, however, it’s probably safer to connect only one set of
Jjacks at a time. Plugging them both in together can sometimes

The First Act: Enter Your Program 43

interfere with the recording process. The plugs are two different
colors so that you can easily match up the plug on one end with the
correct plug on the other end.

To record a program onto a cassette from your computer, first
connect the jack labeled “MIC” (on the left side of the computer) to
the microphone jack on your tape recorder. Make sure you plug
both ends of the cord tightly into the correct jacks. (If you find that
the plug fits loosely into your computer, you may have to hold it
manually in the jack during both the recording and play-back
sessions.)

The volume and tone settings on your tape recorder are impor-
tant. Start with the volume set at about half the maximum. Put the
tone setting at the highest treble and/or the lowest bass. If your first
attempt to record a program is not successful, try turning the vol-
ume up.

Put a fresh cassette in your tape recorder, and rewind it to the
beginning if necessary. If your tape recorder has a counter, set it at
zero so you can keep track of the beginning and ending points of the
recording. ‘

The keyword that you use for saving a program onto a cassette
is SAVE, located above the [S] key. The SAVE command requires
a program title, typed between quotes. You should think of a title
that will remind you of exactly what the program does. We’ll call
this program GREETING. Type the command, but don’t enter it

yet:
SAVE “GREETING*

Now press the RECORD button on your tape recorder, let it
run for a few seconds, and then press the ENTER key on your
computer. Your screen will go blank for a few moments. When you
see the screen fill with black horizontal stripes (about one inch
thick) that shake quickly up and down, you’ll know that the pro-
gram is being sent out to the tape recorder. The length of time the
stripes are on the screen depends on the length of the program. The
greeting program will only take a few seconds to record. Very long
programs can take many minutes.

When the recording is complete, the screen will go blank again
except for the message:

0/0

44 Your Timex Sinclair 1000 and ZX81

displayed in the lower left corner.

Now you can actually use your tape recorder to listen to the
recording if you want to, to make sure that everything went all
right. The recording of the program will produce a high, unpleas-
ant screeching noise, reminiscent of a burglar alarm. You don’t
have to listen to it for very long. If you hear it starting, turn off your
tape recorder; the recording was probably successful. (If the noise
isn’t there, then you’ll have to try the recording process over
again.)

You should always make two copies of any important pro-
grams on two different cassettes. Put one of them away in a safe
place; it will be your “backup” copy in case something should hap-
pen to the copy you use regularly. On each cassette, write the name
of the program, and, if possible, its numerical location on the tape.

To play a program back from a cassette to your computer, you
must connect the jack labeled “EAR” on your computer to the
output jack on your tape recorder. (The jack on your recorder
might be labeled “monitor,” “extension speaker” or “earphone.”)
Again, it’s important that the plugs be securely connected.

The LOAD command, located above the []J] key, is used for
receiving a program into the computer from a cassette. For the
greeting program, type the command:

LOAD “GREETING"

If you don’t know the name of a program, you can also type the
command without the title, but the two quotation marks are still
required:

LOAD 3

Make sure the cassette is rewound to the correct position, and press
the PLAY button on your recorder. Then press the ENTER key
on your computer. At first you’ll see a diagonal pattern of thin
(about one eighth to one quarter inch), relatively stable black lines
on your screen. Then, when the program starts to play, you should
see the same heavy black stripes that appeared when you were
recording the program. When the cassette reaches the end of the
program, your TV screen should go blank. Again, you’ll see the
message:

0/0

The First Act: Enter Your Program 45

in the corner of the screen. This indicates a successful playback of
the program. Press the ENTER key and the program will be listed
on the screen.

If the stripe pattern doesn’t stop when it should, something has
gone wrong. Turn off the tape recorder and press the SPACE key
on your computer. (Notice that the word BREAK is written above
this key. You can always press BREAK to interrupt a program
run, or a saving or loading process.)

The most likely causes of failure when you’re trying to save or
load a program are:

1. Faulty connections. (Check to see if the plugs are pushed
snugly into the correct jacks.)

2. Incorrect volume or tone settings. (You may have to experi-
ment with the best volume setting for your tape recorder.)

PURCHASING SOFTWARE

Mastering the tape recorder connection to the point where you
can record and reload programs easily and reliably may take a
certain amount of patience and perseverance on your part. But the
bonus reward for your efforts, in addition to permanent storage of
your own programs, will be the ability to use programs written and
recorded by other people. In particular, you will be able to buy
programs—some of them rather sophisticated—that may give you
new perspectives on the use of your computer.

"The amount of software available on cassette for the T/S 1000 is
growing rapidly. (Software, by the way, is the word we use to distin-
guish computer programs from the hardware components of the
computer system.) In such general-interest categories as business,
home finance, education, and games, you will find a good selec-
tion of programs to choose from. Many of these programs require
the 16K extra memory module, but some can be used on the basic
computer unit without extra memory.

To give you an idea of the kind of program you will be able to
buy, we’ll look at an example in the next section of this chapter.
We’ll review a program called VU-CALC, which is likely to be one
of the most popular of the programs available for the T/S 1000.

46 Your Timex Sinclair 1000 and ZX81
VU-CALC, A Spreadsheet Program

You may have heard or read about the family of software called
spreadsheet programs. These programs allow you to organize large
quantities of numerical data, and perform many calculations on
them quickly and efficiently. Spreadsheet programs are now avail-
able for most of the larger personal computers. Two examples of
such programs are VisiCalc® and SuperCalc™, both of which are
phenomenally popular among small computer users. Spreadsheet
programs will simplify and speed up any computing task that in-
volves keeping track of, and performing arithmetic operations on,
large sets of numeric data.

VU-CALC, designed for the T/S 1000 with the extra memory
module, is the “kid brother” of these programs. Although it is nei-
ther as powerful nor as versatile as the spreadsheet programs de-
signed for larger computers, it is a worthwhile programming tool
for anyone faced with the drudgery of large arithmetic tasks.

Figure 2.13 shows a simple example of a VU-CALC spread-
sheet. VU-CALC gives you a vast empty worksheet, 36 columns
by 26 rows, into which you can type words, numbers, or formulas.
Each position on the worksheet is referred to by a two-coordinate
“address”: aletter (indicating the row) and a number (indicating the
column). So, for example, position FO1 on the spreadsheet in Figure
2.13 contains the word NET. Positions FO2 and F03 contain net
income amounts for the years 1981 and 1982, respectively.

Once you have begun typing numbers on your spreadsheet,
you can create additional data by writing formulas that refer to
data already on the sheet. For example, positions G02 and G03
show income tax amounts calculated from the net income values
contained in positions FO2 and F03, respectively. In the lower-left
corner of the screen you can see the formula that was used to calcu-
late the value in position G03:

FO3 + .35

(The asterisk in this formula represents multiplication. The formula
is shown on the screen because the worksheet’s cursor is currently
located at G03.) You only need to write such a formula once, and
then you can apply it, if you wish, over many rows or columns of
data. Most important of all, such formulas are dynamic; they are

The Furst Act: Enter Your Program 47

recalculated whenever any data on the worksheet changes.

While you only see three columns and nine rows of the work-
sheet at a time, the TV screen acts as a moveable “window” over
the entire worksheet. To view other parts of the worksheet, you can
“move the window” by pressing the four direction keys located at
the top of your keyboard.

VU-CALC also lets you save spreadsheet data on cassette,
along with the program. This way you can keep permanent re-
cords of the data you put on important spreadsheets.

A Consumer’s Guide to Buying Software for the T/S 1000

Unfortunately, the cassette software available for your com-
puter is relatively expensive. If you buy half a dozen programs,
you’ll spend about as much on the software as you originally paid
for the computer. For this reason, you should learn to be a careful,
selective, and well-informed consumer when you set out to pur-
chase software. You should find a dealer who will let you try out a
program before you buy it. (Many dealers have “floor samples” of
all the software they sell, available for your inspection.)

F=FORMILHA L=0UATH C=CRUCILATE

Bf SALES 58200 66570
Cc w 32400 35600

of EREsE —J =550

[NeT ——JTssse —JTezio
RLLINNNN CICCIINNN Fverm
cone _ J 58555 1105565

Figure 2.13: Example of VU-CALC

48 Your Timex Sinclasr 1000 and ZX81

Each program comes with “documentation” —a small pamphlet
describing how to use the program. Take the time to read the docu-
mentation of a program you are considering buying. The
documentation should describe clearly and simply everything you
need to know to run and use the program successfully. If the docu-
mentation is bad, you may spend so much time trying to under-
stand the program that the benefit of your purchase will be lost.

Here are some questions you should ask yourself before you
buy a new piece of software:

¢ If the program is oriented toward business or home finance,
will it be useful to you in many different situations? Does it
perform specific computing tasks that you need to do? (As
you become more proficient in BASIC, you will be able to
write many programs yourself, designed precisely for the
Jjobs you need to accomplish.)

¢ If the program is a game, is it one that you’ll enjoy playing
time after time?

® If you have questions about how to use the program, will you
be able to find the answers—either from the documentation,
or from your dealer? When you try out the program in the
store, does it seem to do what the docuinentation says it will
do?

® How does the program react when you make a mistake?
Does it provide you with easy ways to correct mistakes? You
should make intentional errors while you are trying out the
program and note the results.

Questions hke these will help you decide whether or not a par-
ticular program is worth your time and money.

SUMMARY

Learning to use the keyboard of your computer is easy once
you’ve mastered the various modes the keyboard shifts into. Since
each line of a BASIC program must begin with a keyword, the
computer always starts you out in the K mode. Following the key-
word, an instruction line may include letters, numbers, or shift
characters (the L. mode); graphics or reverse-video characters (the
G mode); or functions (the F mode).

The First Act:Enter Your Program 49

" Your computer has several important ways of helping you to
recognize and correct any errors that you might make while typing
aprogram. If you try to enter aline that contains a syntax error, the
computer will reject the line, displaying it at the bottom of the
screen with the S cue marking the error. To correct the line you can
use the left- and right-arrow keys to move the cue to the proper
position in the line, and you can insert or delete characters. On the
other hand, if you enter a syntactically correct line that you subse-
quently wish to revise, you can use the computer’s EDIT feature to
make the change. '

Mastering the cassette tape recorder connection with your
computer may require a certain amount of trial and error on your
. part. However, once you have learned to use a cassette recorder for
saving and loading programs, your computer will become a much
‘more valuable tool. You will be able to begin weighing the relative
advantages of purchased software, and you will begin building a
library of programs that you have written yourself.

Chapter 3

The Plot Thickens:
A Short, Graphic
Course in BASIC

INTRODUCTION

In this chapter you’ll learn the essentials of BASIC, while having
a bit of fun with the graphics features of your computer. The pro-
gramming skills you’ll acquire in this chapter do not, of course,
apply exclusively to writing graphics programs. You’ll use the
same commands and techniques later, when you begin writing
other kinds of programs. But the graphics exercises in this chapter
present an enjoyable way to begin learning BASIC. At every point
you’ll be able to picture exactly what the computer is doing in re-
sponse to your instructions.

The T/S 1000 has two distinct systems for producing graphics
on the screen. You saw an example of one of them in Chapter 2,
with the use of the special graphics characters and the display of
reverse-video letters. We’ll begin this chapter by investigating both
systems in detail. Then we’ll move briskly through a short course
in BASIC, covering the commands that you’ll use most often in
programs. You’ll see illustrations of each command in a number of
small programs, and, to summarize what you’ve learned, you’ll
work through a short graphics program that draws rectangles on
the screen.

The final program in this chapter is a relatively long one,
though it does fit into the 2K of memory provided by your com-
puter. You’ll be able to use it to draw many kinds of pictures and
designs on the screen. The pictures will get better and better as
your skill in using this program increases. The program itself merits
careful study, as it illustrates several important techniques that will
help you write clearer, more efficient programs.

52 Your Timex Sinclair 1000 and ZX81

IMMEDIATE COMMANDS

In Chapter 2 we discussed three characteristics of a BASIC
program:

® the lines are numbered;

® each line begins with a keyword;

® the computer merely stores the lines, without performing any
of the instructions, until you type RUN.

It happens that your computer also allows you to use many (but
not all) of the keywords as immediate commands. That is, you can
type an instruction, without a line number before it, and the
computer will perform the instruction immediately, without wait-
ing for you to type RUN. Sometimes you’ll want to use immediate
commands to explore the computer’s reactions to one instruction
or another.

For example, enter the following command into your keyboard:

PRINT “T/S 1000*

The result, you will see, is that the computer immediately prints
T/S 1000 at the top of the screen. Now if you press ENTER again,
you’ll see that the computer has not saved this PRINT instruction.
Immediate commands are performed only once, and then are lost.

You’ve actually already seen several other examples of imme-
diate commands. You know that SAVE and LOAD are used for
storage and retrieval of programs on cassettes. LIST tells the com-
puter to display the lines of the program on the screen. RUN makes
the computer begin performing the lines of the program. Another
command you may have occasion to use soon is NEW, which clears
the current program out of the computer’s memory so you can
write a new program. All these instructions are usually given as
immediate commands—although they can also be used as lines'in
programs.

Other commands, such as PRINT, are normally used as part of
a program, but they can be executed as immediate commands. We
will use PRINT as an immediate command in the next section of
this chapter in order to carry out several quick experiments.

The Plot Thuckens: A Short, Graphic, Course in BASIC ~ 53

TWO SYSTEMS OF GRAPHICS

The PRINT AT Instruction

When you use the PRINT command to display information on
the screen, all the characters you print take up an equal amount of
space. Think of the screen area as a grid, divided into rows and
columns; you can put one character into each square of the grid.
The screen area is 22 rows long and 32 columns wide. (The bottom
part of the screen, below the 22nd row, is reserved by the computer
as work space. As you know well by now, this is the area where new
lines appear as you type them in. You can’t access this area at all
with the PRINT command.)

Using the PRINT AT instruction, you can specify exactly where
you want information to appear on the screen. As you saw in Chap-
ter 2, PRINT AT is always followed by two numbers. These num-
bers represent an “address” on the screen. Figure 3.1 will help
you understand how these addresses are determined. The first

4 22 ROUS
A 32 COLUMNS

PRINT AT ROUW,COLUMN

Figure 3.1: Using the PRINT AT Instruction

54 Your Timex Sinclair 1000 and ZX81

number following PRINT AT is the row, and the second number is
the column of the address. Thus, the correct form of the PRINT AT
instruction is:

PRINT AT row, column; “some information“

Notice once again that the numbers representing the row and
column are separated by a comma, and that the address is sepa-
rated from the information by a semicolon.

Now look again at Figure 3.1. The addresses begin at the upper-
left corner of the screen. You can think of this position as the origin,
if you like. Its address is 0,0. Notice the addresses of the other three
corners of the screen. The row numbers increase as you go down
the screen, and the column numbers increase as you go across to
the right.

To make sure you understand this address system, study the
following instructions, and try to determine approximately where
each of them will put a message on the screen:

PRINT AT 19,5; “X“
PRINT AT 7,7; “WHERE WILL THIS GO?*
PRINT AT 15,25; “HELLO*

Now enter them as immediate commands, one at a time, and see if
you predicted correctly what their results would be. Notice that
when the message contains more than one character, it is the first
character that will be located at the specified address; the rest of the
characters follow on the same line.

You can use a simple PRINT instruction to display several
messages at several different locations. Try the following command:

PRINT AT 3,3; “HERE*; AT 20,25; “THERE*

In summary, PRINT AT can be used to print any character,

word, number, or special graphics character at any position on the
22-by-32 screen.

PLOT and UNPLOT

Your computer also gives you a second method of sending
graphics to the TV screen, using the keywords PLOT and UN-
PLOT. These commands organize the screen somewhat differ-
ently, and require a different system of addresses.

The Plot Thickens: A Short, Graphic, Course in BASIC 55

Figure 3.2 summarizes the use of PLOT and UNPLOT. The
PLOT command produces a small black square, called a pixel (for
“picture element”) at a specified address on the screen. Each per-
formance of PLOT puts a single pixel on the screen. The four
corners of the screen in Figure 3.2 contain pixels. The screen area
can display 44 rows by 64 columns of pixels. Recall the grid address
system of the PRINT AT instruction. If you were to divide each
square of this grid into four smaller squares, you would see the size
of a pixel.

The origin of the pixel addresses is in the lower-left corner of the
screen, rather than the upper-left. This position has the address
0,0. The row addresses increase to 43 as you move up the screen,
and the column addresses increase to 63 as you move across the
screen to the right. The general form of the PLOT instruction is:

PLOT column, row

To become familiar with pixels and the system of addresses
used for the PLOT command, enter the following lines, one at a
time, as immediate commands, and notice where each one places

(L= Tl LoT R D LR O]
3 44 ROUS

2 64 COLUMNS

PLOT COLUMN,ROUY
UNPLOT COLUMN,ROU

Figure 3.2: Using the PLOT and UNPLOT Commands

56 Your Timex Sinclair 1000 and ZX81

its pixel:

PLOT5,5
PLOT 55,3
PLOT 40,40

The UNPLOT instruction “erases” a pixel from the screen. It
takes the same form as the PLOT command:

UNPLOT column, row

We'll be seeing alot of the PRINT AT, PLOT and UNPLOT
commands in the programs of this chapter, so make sure you under-
stand how they work before you read on. If you are still uncertain
about the two different systems of organizing the screen, review
Figures 3.1 and 3.2 and keep experimenting with immediate com-
mands.

A QUICK COURSE IN BASIC

This section will introduce you to most of the essentials of
BASIC programming for the T/S 1000: defining variables; reading
input information; repeating instructions; controlling the order of
performance; and making decisions. You’ll find many short sample
programs that will illustrate each point. It’s important that you
enter each of these programs into your computer and try them out
as you read. If you don’t understand why they produce the results
they do, go back and review the explanation given.

Variables Revisited

We’ve seen that a variable is simply a place in the computer’s
memory reserved for a certain type of information. You can define
many different variables for use in a program. So that you can
access the information easily, each variable has a name. The infor-
mation contained in a variable may change, but the name remains
the same. We have also seen that there are two #ypes of variables—
numerical and textual, or string.

You can define variables—or change the value contained in a
variable—with the LET statement. The general form of the LET
statement is:

LET NAME = VALUE

The Plot Thickens: A Short, Graphic, Course in BASIC 57

This statement, paraphrased, means “store VALUE in a variable
called NAME.” When the computer performs a LET statement, it
first evaluates the information on the right side of the equal sign,
and then stores that information in the variable named on the left
side of the equal sign.

Let’s look at some examples. The LET statement can be used
as an immediate command, so you can enter the following lines
directly, without line numbers. Let’s say you want to define a vari-
able called INCOME to store the amount of income you earned
this year. Your command might be something like this:

LET INCOME = 15000

Enter this command and note the results. You see only the message
0/0 in the lower left corner of the screen—meaning that the com-
puter has performed the command.

Now to assure yourself that INCOME has been defined, enter:

PRINT INCOME

You will see that the vsalue of the variable INCOME—15000—is
printed at the top of the screen. So, when you include a variable
name in a PRINT staternent, the computer displays the value con-
tained in that variable on the screen.

You are free to choose any name you want for a variable.
Whenever possible, it’s best to choose a name that will describe
what the variable stands for. In the case of numerical variables, it’s
also up to you to decide on the length of the variable name. Many
people prefer to use long variable names, such as INCOME,
because they make a program easier to read. You can see right
away what the variable is for. The disadvantages of long variable
names are, first, that they take longer to type at the keyboard, and
second, that they take up more of the computer’s memory. For
these reasons, you may find yourself writing shorter, abbreviated
variable names, such as INC, or even simply I.

Once you’ve defined a variable with a certain name, the com-
puter will only recognize the exact name you’ve specified. If you
accidentally misspell a variable name, or if you try to abbreviate it
once it’s already been defined, the computer won’t know what you
mean. For example, now that you have defined the variable
INCOME, try entering each of the following PRINT lines:

58 Your Timex Sinclair 1000 and ZX81

PRINT IMCOME
PRINT INC
PRINTI

None of these names can be used to access the information in the
variable INCOME. After each one of these commands, you'll see
the message:

2/0

in the lower-left corner of the screen. The 2 is a code for one of the
computer’s error messages; it means simply that you have used an
undefined variable name. (You can see the codes for all the error
messages in Appendix B.)

In a program, variables are your means of storing pieces of
information that you will need to use again. In addition to numeri-
cal information, you may also want to store characters, words, or
text in the computer’s memory. As we’ve seen, items of nonnumeri-
cal information are called strings, and the variables that hold them
are called string variables. The name of a string variable, you’ll
recall, must end in the character “$”. Unlike numerical variable
names, the names of string variables must be exactly two charac-
ters long: a letter and the $ character.

Here are some examples of LET statements that define string
variables:

LET A$ = “2344 SIXTH STREET “
LETC$ = “BERKELEY “
LETS$ = “CA“

Enter these three LET satements and then type the command:
PRINT A$; C$; S$

The result will be:
2344 SIXTH STREET BERKELEY CA

printed at the top of your screen. This shows you something-new
about the PRINT statement; it can contain as many variable
names as you wish. The computer will simply display the contents
of each variable on the screen. Notice that each variable is sepa-
rated by a semicolon in the PRINT statement. This tells the com-
puter to display the contents of the variables side by side on the
same line.

The Plot Thickens: A Short, Graphic, Course in BASIC 59

Now try these two PRINT statements:

PRINT “ILIVEIN “; C$;".“
PRINT “MY INCOME IS $“; INCOME;"."

These lines show you that a PRINT statement can include any
combination of elements; literal string messages, numerical varia-
ble names, string variable names. The first of these two statements
should put the message:

ILIVE IN BERKELEY.

at the top of your screen. What does the second statement do? As a
further experiment, use LET commands to change the value of C$
to the name of your city and the value of INCOME to your income.
Then enter these two PRINT statements a second time and watch
the results.

There are several ways to clear variables—and the data they
contain—out of the memory of your computer. The easiest way, of
course, is to unplug the power, but if you do that you will lose
everything, including the program you might be working on.
Instead, you can use the keyword:

CLEAR

which is located above the [X] key. This command clears all varia-
bles and data from memory, but leaves all program lines intact.
Type this command now, and then enter:

PRINT INCOME

You’ll get the error message 2/0, telling you that the variable IN-
COME is no longer defined.

Finally, each time you run a program, using the keyword RUN,
the variables and data left over from any previous runs of the pro-
gram are cleared from memory.

A second way to define variables, in addition to the LET state-
ment, is with the INPUT statement. We'll study this statement
next.

READING INFORMATION FROM THE KEYBOARD
In T/S 1000 BASIC, the INPUT statement has only one form:
INPUT name

60 Your Timex Sinclair 1000 and ZX81

where “name” can be any variable name.

As you saw in the greeting program of Chapter 2, INPUT tells
the computer to wait for some data to be typed onto the keyboard,
and then to store that data in the variable named in the INPUT
statement. This variable can either be one that hasn’t yet been
defined, or it can be one that already has a value. In the latter case,
the old value is lost and the new value, read from the keyboard,
takes it place.

INPUT cannot be used as an immediate command, so we’ll
have to write a short program to experiment with it. Type in the
following six lines:

10 PRINT AT 21,0; “NAME?*
20 INPUT N$

30 PRINT AT 21,0; “AGE? “
40 INPUT A

50 CLS

60 PRINT N$; “, AGE ;A

When you run this program, you will see that the action stops twice
for you to enter information at the keyboard. First type your name,
and then your age. When you are finished, a message like this will
appear at the top of the screen:

JOHN DOE, AGE 31

There are several important things to learn from this program
and the action it results in. First of all, what exactly does the com-
puter display on the screen when it is waiting for input from the
keyboard? If you were watching closely during the program run,
you noticed two different kinds of displays on the screen. When the
computer is waiting for a string, it displays the L cue (in reverse
video, of course) between quotation marks. When it is waiting for
numeric data, on the other hand, it simply displays the L cue
alone. This is how the computer distinguishes between an INPUT
statement that contains a string variable name and one that con-
tains a numeric variable name.

Lines 10 and 30 in this short program illustrate an important
design feature for clear and efficient programming. Whenever you
write a program that has INPUT statements, you should think
carefully about the person who will be using the program. That
person will need to be told what information to type into the com-

The Plot Thickens: A Short, Graphic, Course in BASIC ~ 61

puter when the action stops for input. For this reason, it is a good
idea to print a “prompt” on the screen whenever the computer is
waiting for input. Lines 10 and 30 give examples of such prompts.
Notice that these lines place their prompts down near the bottom of
the screen. This is done so that the prompt will appear as close as
possible to the “echo” of the information that is being entered at the
keyboard.

Line 50 of this program clears the screen, so that the message of
line 60 will appear at the top of the screen. Study line 60 carefully;
notice that the message between quotes (“, AGE “) must supply a
comma and two spaces to separate the information from the two
variables:

60 PRINT N$; “, AGE “;A

To summarize, we have seen that variables can be defined in
either of two ways: with the LET statement, or with the INPUT
statement. In general, you cannot use a variable in a program unless
it has been defined in one of these two ways. (There is one excep-
tion to this rule, which we will see in the next section of this chap-
ter.) Once a variable has been defined and given a value, you can
use a PRINT statement to display its value on the screen. You can
also change the value contained in a variable with subsequent LET
and INPUT statements. We will continue to investigate this sub-
Ject as this chapter progresses.

Before we move on, let’s look at one more short program illus-
trating the use of variables. Type the keyword NEW to clear the last
program from your computer’s memory. Now type in the following
five lines:

200 PRINT AT 21,0; “HORIZONTAL“
210INPUTH

220 PRINT AT 21,0; “VERTICAL“
230 INPUTV

240PLOTH,V

These lines are actually part of alarger program that we’ll be build-
ing as we go along, but you can run these five lines as though they
formed a complete program. When you run the program you’ll see
two input prompts on the screen, first:

HORIZONTAL

62 Your Timex Sinclatr 1000 and ZX81

at which point you should enter a number between 0 and 63; then:
VERTICAL

to which you should respond with a number between 0 and 43.
When you have entered both numbers, the program will display
one pixel on the screen at the address that you specified with the
two numbers.

Make sure you understand how the program works. Lines 210
and 230 contain the INPUT instructions, defining the numeric
variables H and V, respectively. Then line 240 uses the valuesin H
and V as the address in a PLOT command:

240PLOTH,V

The PLOT and UNPLOT instructions do not require literal num-
bers for the pixel address. They can instead take variables for the
address, as long as the variables are defined, and as long as the
values they contain form a legal pixel address.

Next we will investigate the FOR/NEXT statements; you’ll
recall from Chapter 2 that these statements can be used to make the
computer repeat instructions many times.

REPEATING INSTRUCTIONS
An example of the simplest form of the FOR statement is:
FORI = 1TO20

The I in this statement can be called the control variable, because it
controls the number of times that the FOR statement, and the
statements after it, will be repeated. The name of the control varia-
ble must be only one letter long. The control variable does not need
to be defined in advance by a LET or INPUT statement. (This is
the exception to the rule.)

Let’s look at the FOR statement in action. FOR and NEXT
cannot be used as immediate commands, so we will look at a short
program:

10FORI = 1TO20
20 PRINT “REPETITION*
30 NEXT!

Remember that the FOR and NEXT lines represent the top

The Plot Thickens: A Short, Graphic, Course in BASIC 63

and the bottom of a “loop.” All the lines in between will be re-
peated a specified number of times. Here is how the computer uses
the control variable, I in this case, to decide on the number of
repetitions:

1. At the beginning, I is given the value that appears just after
the equal sign, 1 in this case.

2. All the statements between FOR and NEXT are performed.

3. When the computer gets to the NEXT line, it increases (or
increments) the value of I by 1, and then refers back to the
FOR line.

4. If 1 is still less than or equal to the number specified after the
word TO (20 in this case), the computer repeats all the lines
up to NEXT again. If I is greater than the number that
appears after TO, then the looping stops.

Type these three lines into your computer, and run them. Figure

3.3 shows the results. As you can see, the PRINT instruction in
line 20 has been performed 20 times. In other words, the control

REPETITION
REPETITION
REPETITION

Figure 3.3: Repetition

64 Your Timex Sinclair 1000 and ZX81

variable I has been incremented from 1 to 20; after each incremen-
tation the PRINT instruction was performed one time.

To further explore the repetition concept, we will look at two
variations of this short program, each of which involves making
small changes in line 20. To make these changes, use the EDIT
feature of your computer.

First, change line 20 so that it looks like this:

20 PRINT “REPETITION *;

Two changes have been made: a space has been added between the
N and the closing quotation mark, and a semicolon has been added
to the end of the line. When you’ve made these changes, run the
program again; the results should look like Figure 3.4. This little
exercise is simply to remind you of the function of the semicolon in
a PRINT statement. The semicolon tells the computer notto gotoa
new line. (We say that the semicolon prevents a line feed.) Thus,
when a PRINT statement ends in a semicolon, the next PRINT

REPETITION REPETITION REPETITION
REPETITION REPETITION REPETITIO
N REPETITION REPETITION REPETITI
ON REPETITION REPETITION REPETIT
ION REPETITION REPETITION REPETI
TION REPETITION REPETITION REPET
ITION REPETITION REPETITION

Figure 3.4: More Repetition

The Plot Thickens: A Short, Graphic, Course in BASIC 65

statement that is performed will start off where the last message
ended.

As a final experiment, change line 20 as follows:
20 PRINT AT |,I; “REPETITION*

and run the program a third time. The results are shown in Figure
3.5.

This last version of the program illustrates an essential point:
The control variable of the FOR statement can be used as a variable in other kinds
of statements that appear inside the loop. The fact that the control variable
receives an incremented value each time the loop is repeated can
make this variable an extremely valuable tool for certain kinds of
repetitive actions. In Figure 3.5 you can see that the control variable,
I, determined the address for each performance of the PRINT AT
statement. As the value of I was incremented from 1 to 20, the
PRINT AT statement was executed as:

PRINT AT 1,1; “REPETITION*
PRINT AT 2,2; “REPETITION*

REPETITION
REPETITION
REPETITION
REPETITION
REPETITION
REPETITION
REPETITION
REPETITION
REPETITION
REPETITION
REPETITION
REPETITION
REPETITION
REPETITION
REPETITION
REPETIT ION
REPETITION
REPETITION
REPETITION
REPETITION

Figure 3.5: Still More Repetition

66 Your Timex Sinclair 1000 and ZX81

PRINT AT 3,3; “REPETITION"
PRINT AT 4,4; “REPETITION"

...and soon.

Let’s continue to investigate this last point a little further with
another example. Revise your three-line program so that it looks
like this:

10FOR| = 20 TO 40
20PLOT I,
30 NEXT |

In this version, we’ll use the value of the control variable to deter-

mine the addresses of pixels produced by the PLOT command.

Run the program, and you’ll see a diagonal line of pixels running

from the address 20,20 to the address 40,40. Notice that the control

variable, I, does not start at 1 in this program; instead it is incre-

mented from 20 to 40 by the specification in the FOR statement.
By changing line 20 to:

20 PLOT 1,20
you can produce a horizontal line of pixels. Likewise, the line:
20 PLOT 20,!

will produce a vertical line of pixels when you run the program.
You should try each of these versions of the program.

In all the examples we have seen so far, the control variable has
been incremented by 1 for each repetition of the FOR loop. In
some cases you will want to change the amount of incrementation to
some number other than 1. You can do so with the word STEP; for
example:

FORI| = 2TO40STEP 2

(STEP is a shift character, located on the [E] key.)
To see how STEP works, study the following version of our
program:

10 FOR| = 2TO 40 STEP 2
20 PLOT 1,20

25 PLOT 20,

30 NEXTI

The Plot Thickens: A Short, Graphic, Course in BASIC 67

In this program, the control variable, I, will take the values 2,4,6,
8, ..., 40. As a result, the PLOT statements will produce broken
lines, because every other address along the line will be skipped.
(This program also shows how easy it is to add lines to a FOR loop.
Line 25, the second PLOT statement, produces a second line on
the screen.) Run the program. Figure 3.6 shows what will appear
on the screen. Study this program and its results carefully before
you move on. Make sure you understand why it does what it does.

In all the programs we’ve looked at so far, the order in which
the lines are performed is determined solely by the line numbers.
The computer starts with the smallest line number, and moves up,
line by line, until the last line of the program is executed. Some-
times this is an adequate way for the program to be designed, but
often there will be compelling reasons to perform certain lines
out of order. We will discuss some of the reasons for doing this, and
we will examine the keywords that make it possible, in the next
section.

Figure 3.6: Investigating STEP

68 Your Timex Sinclair 1000 and ZX81

Controlling the Action

The keyword GOTO (located above the [G] key) can be used
to tell the computer to perform a line out of sequence. GOTO is
simply followed by the line numbers that you want the computer to
perform next. The GOTO command can send control of the pro-
gram forward to a line number that is larger than the current line:

90 GOTO 300
or it can send control backward, to a smaller line number:
90 GOTO 10

The GOTO command is a simple one, but the reasons for using
it are often complicated. Generally, it is a good idea to use it spar-
ingly in a program, because an excess of GOTOs can make the
results of your program almost impossible to predict with cer-
tainty. But there are some situations when the use of GOTO can-
not be avoided.

In both of the major programs of this chapter, we will use
GOTO to create an “endless loop.” The program, or a certain part
of the program, will be repeated time after time; the program itself
has no provision for ever ending. Your keyboard provides you with
a means of interrupting such a program artificially. You can sim-
ply press the BREAK key, located in the lower-right corner of the
keyboard.

The following lines are an example of an endless loop:

10 PRINT AT 10,13; “FLASH"
20 PRINT AT 10,13; “ “
30GOTO 10

You can follow through the sequence of the program before you
run it. First the PRINT statements at lines 10 and 20 are per-
formed, then line 30 sends control of the program back to the
beginning again. This process continues forever. Run the program
to see the results. This is, of course, a rather frivolous example;
subsequent programs will put GOTO to a better use.

Another BASIC command that instructs the computer to jump
out of sequence to a new place in the program is GOSUB. This
instruction means “go to a subroutine.” Like the GOTO com-

The Plot Thickens: A Short, Graphic, Course in BASIC 69

mand, it is followed by a line number; for example:

GOSsuB 200

In order to understand GOSUB, you have to know what sub-
routines are, and what they are used for. Often in a program that
performs a number of different jobs, certain small and well-
defined tasks may need to be performed time after time at different
points in the program. When you set out to write such a program,
you will recognize these tasks, and you will want a convenient and
economical way to perform them whenever the need arises. BA-
SIC lets you isolate such tasks into units called subroutines. Once
you have written a subroutine, you can “call” it at any point in the
program. It will do its job, and then return control of the program
back to where the “call” originated.

Let’s look at an example. Recall the short program we looked
at that reads a horizontal and vertical address from the keyboard
and then uses this address to place a pixel on the screen. This pro-
gram will become a subroutine in a larger program we’ll soon be
writing. Here is what it will look like as a subroutine:

200 PRINT AT 21,0; “HORIZONTAL"
210 INPUTH

220 PRINT AT 21,0; “VERTICAL *
230 INPUTV

240 PLOTH,V

250 RETURN

Notice that a line has been added: a RETURN instruction in
line 250. RETURN is a keyword, located above the [Y] key. Every
subroutine must have a RETURN; the instruction simply says
that the job of the subroutine is complete. When the computer
encounters the RETURN instruction, it automatically returns
control of the program back to the place where the subroutine was
called.

To call this subroutine, then, you can simply write the com-
mand:

GOSUB 200

We’ll look at two short programs that use this subroutine. You
should type both programs into your computer, along with the

70 Your Timex Sinclair 1000 and ZX81

lines of the subroutine, and try them out.
Here is the first one:

10 PRINT “YOU MAY PLACE 5 PIXELS"
20FORI = 1TO5

30 GOSUB 200

40 NEXT |

50 STOP

This program allows you to place five pixels on the screen. It
begins by printing a message at the top of the screen (line 10) and
then enters a FOR loop. The GOSUB statement, at line 30, is part
of the loop. Here is the sequence of events generated by this loop:

1. The FOR statement uses the control variable, I, to deter-
mine the number of repetitions.

2. The GOSUB statement sends control of the program down
to line 200, where the job of inputting an address and placing
a pixel is performed. v

3. The last line of the subroutine (250) RETURNS control of
the program back up to line 40, the NEXT statement.

4. NEXT increments the control variable, I, and the looping
continues.

You can see from this sequence of events that the subroutine at
line 200 will be called five times, allowing you to place five pixels
on the screen; and then the program is complete. Line 50 is very
important:

50 STOP

The keyword STOP (a shift character, located on the [A] key) is
used to tell the computer that the program is over. In this case, the
main body of the program is formed by lines 10 to 50. When the
FOR loop has completed its five repetitions, you don’t want: the
computer to continue on to line 200 to perform the subroutine
again. So you have to instruct the computer explicitly to stop,
which is the role of line 50. This is the first time we have had to use
the keyword STOP. Up to now we have seen programs performed
line by line, from the first line to the last line. When the computer
performs the last line, it stops automatically. But in this program

The Plot Thickens: A Short, Graphic, Course in BASIC 71

the fina] six lines of the program (lines 200 to 250) form a subroutine,
which we want to perform only by means of the GOSUB command.
Here is the second example of a program that uses our subroutine:

10 PRINT “PLACE AS MANY PIXELS AS YOU WANT*
20 GOSUB 200
30GOTO 20

This program lets you place as many pixels on the screen as you
want. Lines 20 and 30 form an endless loop. Here is how the
program works:

1. Line 20 calls the subroutine.

2. The subroutine does its job and then returns control to line
30.

3. The GOTO instruction in line 30 sends control back to line
20.

Run the program to see exactly what it does. You can continue
entering pixel addresses as long as you want to. After reading each
address, the computer will place a pixel on the screen. To stop the
program, you’ll have to enter the word STOP instead of typing an
address. The BREAK key doesn’t work when the computer is
waiting to read input from the keyboard.

We have one last topic to discuss before we move on to the two
major programs of this chapter. In the next section we will see how
to use the keyword IF to instruct the computer to make decisions
during the run of a program.

Decisions, Decisions . . .

You can often vastly increase the power and convenience of a
program by including instructions that give the computer the power
to “decide” between two different courses of action. You may have
already encountered a problem in the pixel-placing program that
could be solved by adding some decision lines to the program. First
we’ll look at the problem, then we’ll see the solution.

Run the second pixel program again. You know that when you
see the prompt

HORIZONTAL

you must enter a number that is less than or equal to 63. Likewise,

72 Your Timex Sinclair 1000 and ZX81

when you see the prompt
VERTICAL

you cannot enter a number greater than 43. This is because the
largest address that the PLOT instruction can handle is 63,43. Any
address larger than that would fall somewhere outside of the screen
area. Perhaps you have already seen what happens to the program
if you accidentally enter an “illegal” address. If you haven’t, then
try it now. Enter the number 64 for the horizontal part of the ad-
dress, and 44 for the vertical. Both of these numbers are larger than
PLOT can handle. As a result, no pixel is placed on the screen;
instead the program run is interrupted and the error message:

B/240

appears in the lower-left corner of the screen.

If you look at Appendix B you’ll find the meaning of this error
message. The error code “B” means that the number you have
entered is outside the acceptable range of numbers. In this case, the
range is defined by the computer for the keyword PLOT. Notice
that the second part of the error message gives you the line
number—240—where performance of the program stopped. If
you look again at the subroutine you’ll see that, sure enough, line
240 is the line that contains the PLOT command.

To avoid this problem, it would be very convenient if the com-
puter could check the input values of the variables H and V before
going on to perform the PLOT command. If either H or V were
found to contain values too large for PLOT to handle, the ideal
course of action would be to return to the INPUT statements for an
acceptable value. This is exactly what we’ll instruct the computer
to do, using two IF statements.

A general description of the IF statement might look something

like this:
IF (true-or-false statement) THEN (keyword command)

As you can see, the IF statement contains two parts. The first part
begins with the keyword IF (located above the [U] key) and the
second part begins with the word THEN (a shift character, located
on the [3] key). After IF comes a statement that the computer
evaluates to either true or false. This statement is usually in the
form of an equality or an inequality. We will see in a moment how

The Plot Thickens: A Short, Graphic, Course in BASIC 73

to write such statements. After the word THEN comes a command
to the computer, expressed in the form of a keyword instruction.
The IF statement results in one of two possible courses of action:

1. If the true-or-false statement is true, then the computer per-
forms the command expressed after THEN.

2. If the true-or-false statement is false, then the computer
skips by the command after THEN and simply moves on to
the next line of the program.

You can see how powerful the IF statement is. By this means,
your programs can be made to respond accurately and efficiently
to many different situations that occur during the run of a pro-
gram.

Let’s see exactly how to write an IF statement. The true-or-
false statement involves learning how to use a new set of symbols on
your keyboard. They are the equality and inequality symbols:

(is equal to)

(is less than)

(is greater than)
= (is less than or equal to)
= (is greater than or equal to)
<> (is not equal to)

All of these symbols are shift characters, located on the [L], [N],
[M], [R], [Y], and [T] keys, respectively. The symbols are used to
compare two different values, which can be numerical or nonnu-
merical. Here are some examples of statements using these symbols:

VAVAI

I>5
K<J
M<=16
S$ = “YES“
H< > 15

All of the examples above compare either the values of two differ-
ent variables, or the value of one variable and a literal value. All of
these statements are either true or false. For example, in the first of
these statements, if the variable I contains the value 4, the state-
ment is false, because 4 is not greater than 5. If I contains the value

74 Your Timex Sinclair 1000 and ZX81

7, however, the statement is true, because 7 is greater than 5.
Here are examples of some IF statements that use these true-or-
false statements:

IF1 > 5 THEN PRINT “1 IS TOO BIG"
IFK < JTHENINPUTJ

IFM < =16 THEN GOTO 200

IFS$ = “YES” THEN STOP

IFH <> 15THENLETH = 100

Notice that in each case, THEN is followed by a keyword. All of
the keywords on your keyboard can be used after THEN in an IF
statement, although some of them are more commonly used than
others. Keep in mind that the instruction after THEN is only per-
formed if the true-or-false statement turns out to be true. Otherwise,
the computer simply proceeds on to the next line of the program.

Now, for some meaningful examples of IF, let’s return to the
problem we outlined above. The solution to the problem requires a
refinement of the subroutine that begins at line 200. When the
computer reads each value from the keyboard, and assigns the
values to the variables H and V, respectively, we would like to add a
test to make sure both values are within the range that PLOT can
handle. We can easily express this test in the form of an IF state-
ment placed directly after each INPUT statement.

Here is the first one:

210INPUTH
215IFH > 63 THEN GOTO 210

Line 210 reads a value for H. Line 215 evaluates the statement H
<.63 before deciding what to do next. If the variable H contains a
value that is greater than 63, then the GOTO statement is per-
formed. Control of the program goes back to line 210 for a new
input value. If, on the other hand, the value of H is less than or
equal to 63, then the GOTO command is skipped and the program
proceeds normally to the next statement.)

We can write a similar IF statement directly after the INPUT
statement for V. This second IF, at line 235, evaluates the statement
V > 43; it sends control back to line 230 if V > 43 is true.

The entire subroutine is shown in Figure 3.7. Study it carefully,
and make sure you understand how the two IF statements work.
Then try it out with one of the two short programs that we

The Plot Thickens: A Short, Graphic, Course in BASIC 75

described above. In particular, when the program is running, try
typing some incorrect values for the horizontal and vertical parts of
the address. Now, instead of terminating the program, this kind of
input error will simply result in rejection of the input value. For
example, when you see the prompt:

HORIZONTAL

try typing the number 66. When you do so, the prompt will remain
the same, indicating that 66 will not work as the horizontal ad-
dress. You have to type another value.

As a review of everything you’ve learned so far in this chapter,
we’ll now look at a graphics program that draws rectangles on the
screen. We’ll refer to it as “the rectangle program.”

The Rectangle Program

The main body of the program is shown in Figure 3.8. The
program uses the subroutine shown in Figure 3.7, so you’ll have to
include those lines when you type the program. Enter the entire

PRINT AT 21,0; "HORIZONTAL"
INPUT H L
IF H>63 THEN GOTO 210
PRINT AT 21,0; "VERTICAL -
INPUT VU

IF U>43 THEN GOTO 230
PLOT H,V

RETURN

Figure 3.7: The Pixel Subroutine, Including IF Statements

76 Your Timex Sinclair 1000 and ZX81

program into your computer now and run it.

This program is simply an exercise designed to illustrate a
number of programming tools in action. All the same, you can use
it to produce some interesting images on the screen. Here is how it
works: It begins by prompting you to enter two complete pixel
addresses. In other words, you will see the HORIZONTAL and
VERTICAL prompts twice, and the computer will wait for you to
enter a number after each prompt. A pixel will appear on the
screen as soon as you have entered a complete, valid address.
When two pixels are determined, the computer will draw a rectan-
gle on the screen, using the pixels as two diagonal corners of the
rectangle. This process continues for as long as you want, allowing
you to draw many rectangles of different sizes and shapes on the
screen. Figure 3.9 shows a sample screen produced by this pro-
gram. To end the program, enter the keyword STOP.

As you experiment with using the program, notice that it has
the ability to draw the rectangles in different directions. To see
what this means, begin by entering the addresses 5,5 and 25,25.

LET HOIR=1
LET UDIR=1
GO5SUB 200

THEN LET HDIR
THEN LET UDIR

FOR _I=H1 TO H2 STEP HDIR
PLOT I,vul

PLOT I,vu2

NEXT I

FOR I=Ul1l TO v2 STEP UDIR
PLOT H1,I

Figure 3.8: The Rectangle Program

The Plot Thickens: A Short, Graphic, Course in BASIC 77

Since the first address s lower than, and to the left of, the second
address, the computer draws the top and bottom of the rectangle
from left to right, and the sides of the rectangle from bottom to top.
Now enter two more addresses: 45,43 and 25,23 in that order. In
this case, the first address you entered is above and to the right of
the second address, and as a result the rectangle is drawn in oppo-
site directions from the first rectangle. The top and bottom are
drawn from right to left; and the sides from top to bottom. This
may seem like a small detail, but it is a carefully designed feature of
the program. Let’s examine the lines of the program. To look at the
listing on your own screen, enter STOP to end the program run
and then press ENTER again. The program is too long to be dis-
played all at once on the screen, but remember that you can use the
keyword LIST to view different parts of the program. For exam-
Ple, if you wanted to see the subroutine at line 200, you would

simply type:
LIST 200

— [

HORIZONTARL

Figure 3.9: Results of the Rectangle Program

78 Your Timex Sinclair 1000 and ZX81

The first two lines of the program define the variables HDIR
and VDIR:

10LETHDIR = 1
20LETVDIR = 1

The names of these variables stand for “horizontal direction’ and
“vertical direction,” respectively. Throughout the run of the pro-
gram, each of these variables will always contain either the value 1
orthe value - 1, and, as a result, they will be used to determine the
direction in which the rectangle is drawn. We will see how as we
look at subsequent lines of the program.

Lines 30 and 60 each contain calls to the subroutine at line 200:

GOSUB 200
Remember what this subroutine does:

1. It prints the prompt HORIZONTAL on the screen and
then reads a value (not greater than 63) from the keyboard.
It stores this value in the variable H.

2. It prints the prompt VERTICAL on the screen and then
reads a value (not greater than 43) from the keyboard. It
stores this value in the variable V.

3. It uses the PLOT command to place a pixel at the address
H,V.

This subroutine must be called twice for each rectangle—to deter-
mine the two diagonal corners that will define the rectangle. Each
time the subroutine is called, it will store new values in the varia-
bles H and V. The old values of H and V will be lost. But in order to
draw the rectangle, the program has to keep track of the two dis-
tinct addresses of the two corners. This is the reason for lines 40, 50,
70, and 80 in the program. After each subroutine call, the program
stores the new values of H and V in variables whose purpose is to
“save” those values. Specifically, H1 and V1 save the values of the
first address (i.e., from the first call to the subroutine); and H2 and
V2 save the values of the second address (from the second call to
the subroutine).

Study the form of the LET statements that assign values to the
variables H1, V1, H2, and V2. For example, look at the first one:

The Plot Thickens: A Short, Graphic, Course in BASIC 79

40LETH1 = H

This statement, paraphrased, says, “Take the current value of the
variable H, and store that value in the variable H1.” This is the
first time we have seen a variable name on the right side of the
equal sign in a LET statement. It’s important for you to under-
stand what the statement does—and what it doesn’t do. It defines
the variable H1 and gives it a value. But it does ot affect the vari-
able H in any way. After this LET command is performed, the
variable H will still have the same value it had before.

Once these two addresses are determined, the computer must
decide the directions in which to draw the rectangles. Lines 90 and
100 control this decision. Remember that HDIR and VDIR are
both initially set to a value of 1. As we will see, this value indicates
that the rectangle will be drawn from left to right and from bottom
to top. The purpose of lines 90 and 100, then, is to change these
directions, if necessary. If the second horizontal value, H2, is
smaller than (i.e., to the left of) the first, H1, the rectangle must be
drawn from right to left. This is indicated by changing the value of
HDIR to -1:

90IFH2 < H1THEN LETHDIR = - HDIR

Notice the LET command that appears after the word THEN.
The variable HDIR appears on both sides of the equal sign. This
LET statement says, “Take the nggative of the current value stored
in HDIR, and store that new value back in HDIR.” In other
words, since the original value of HDIR was 1, the new value will
be - 1. The original value is, of course, lost.

Next in the program there are two FOR loops. The first loop
(lines 110 to 140) draws the top and the bottom lines of the rectan-
gle, and the second loop (lines 150 to 180) draws its sides. As you
study the way these loops are constructed, you’ll understand the
full significance of the direction variables, HDIR and VDIR.

Each loop contains two PLOT commands. We’ve already seen
how two PLOTSs within a FOR loop can produce two scparate
lines. In this case, they produce parallel lines. In the first loop, the
control variable, I, is incremented from the value of H1 to the
value of H2:

110FOR | = H1 TO H2 STEP HDIR

80 Your Timex Sinclasr 1000 and ZX81

The subsequent PLOT statements have fixed vertical addresses, at
V1 and V2, respectively; they use the varying value of I as their
horizontal addresses:

120 PLOT ILV1
130 PLOT |, V2

This is why you see the top and bottom lines of each rectangle
drawn first when the program is running. '

In the same way, the second FOR loop draws the sides of the
rectangle by holding the horizontal addresses, H1 and H2, fixed,
and varying the vertical addresses from V1 to V2:

150 FOR| = V1 TO V2 STEP VDIR
160 PLOT H1,i

170 PLOT H2,|

180 NEXT |

Now, what about the STEP clause of these two FOR statements?
The easiest way to see why they are necessary is to think of entering
two pixel addresses where the first address is above and to the right
of the second address; for example:

address #1 : 45,43
address #2 : 25,23

Now substitute these values into the FOR statements and see what
you have:

110FOR| = 45TO 25
150 FORI = 43TO 23

It turns out that these two FOR loops, as they appear above, would
never perform their instructions even once, because the first num-
ber in the FOR statements is greater than the second number. In
order to make these loops work, we have to add a STEP clause that
will result in a decrease (or decrement) of the control variable, I, each
time the loop is repeated. This is why the direction variables,
HDIR and VDIR, must be set to — 1 if the first address is greater
than the second address. As a result, the FOR loops for the ad-
dresses above would be:

110 FOR| = 45 TO 25 STEP -1

The Plot Thickens: A Short, Graphic, Course in BASIC ~ 81

150 FOR| = 45 TO 23 STEP -1

The STEP clause specifies that the control variable will be de-
creased by 1 each time the loop repeats.

If these details still seem a bit confusing, run the program
again, and think about the two FOR loops as you watch the rect-
angles appear on the screen. Draw several rectangles, and observe
the different directions in which they are drawn. You now know
that these directions are determined by the order in which you
enter the pixel addresses.

The last line of the main body of this program (that is, before
the beginning of the subroutine) is line 190:

190 GOTO 10

This line creates an endless loop. You can keep drawing rectangles
as long as you want to. The program itself has no provision for
stopping, which is why you have to use the STOP command from
the keyboard in order to end the program run.

The final program of this chapter is also a graphics program,
but one that is rather more interesting than the rectangle program.
We will refer to this final program as “the picture program,” be-
cause it is designed to help you draw pictures on the screen. We’ll
begin with instructions for using the program, so you can type it in
and start enjoying it right away. (The program is long, so be sure
you store a copy of it on cassette as soon as you’ve typed it all in.)

You’ll also find a line-by-line explanation of how the program
works. The purpose of including the program in this chapter is to
deepen and expand your understanding of all the BASIC instruc-
tions you’ve learned about so far. The methods and techniques
illustrated in the picture program are somewhat more advanced
than anything you’ve seen so far. You may find that you’ll have to
live with the program for a while before you fully understand how it
works. Butdon’t rush yourself. You can have fun using the program
even if you haven’t quite cracked the shell of its inner logic.

THE PICTURE PROGRAM

The program listing is shown in Figures 3.10, 3.11, and 3.12.
As you can see, the program is much too long to be displayed all at
once on the screen. As you type the program into your computer,
filling the screen with lines of instruction, you’ll find that the

82 Your Timex Sinclair 1000 and ZX81

computer continually prints and reprints the listing of the program
on the screen. It always adjusts the portion of the program that
appears on the screen so that the current line will be displayed. This
process of adjustment can be rather slow when you’re typing such a
long program. To speed up the process, you can put the computer
in fast mode. Simply enter the keyword FAST as an immediate
command. If you do this, you’ll find that the computer takes much
less time adjusting the program listing. Once you have typed the
program, and before you run it, return the computer to the slow
mode by entering the keyword SLOW, again as an immediate
command.

Check through all the lines of the program to make sure you
have typed them correctly. Then enter the RUN command to run
the program. Figure 3.13 shows the screen as it appears initially,
when you first start the program. In the center of the screen is a
single pixel, and some brief instructions are displayed at the top of
the screen. You can move this pixel anywhere on the screen, in any
of eight directions: up, down, left, or right; and the diagonal

10 CLS
20 PRINT TAB S; IENEIENEEENG

U=1

Cy =21
E FIRST PIXEL
GOSUB 1100 -
PLOT CX,CY
REM READ KEYBOARD
IF INKEYS$="" THEN GOTO 110

LET _I$=INKEYS
IF I%$="C" THEN GOTO 10
?EM MOVE OR PRINT

150 IF I$="P" OR Ig$="M" T
c03UB S0 Te="n HEN

160 IF I$>="1" AND I%$<="8" THEN
GOSUB (100* (UAL (I$) +4)
170 GOTO 110

299 REM _PRINT OR MOVE
300 IF CX=63 THEN LET HM=-U

S/0

Figure 3.10: The Picture Program

The Plot Thickens: A Short, Graphic, Course in BASIC 83

directions, described as NW, NE, SE, SW. The word in the upper-
left corner of the screen always describes the current direction. (At
the beginning of the program the direction is “UP.”) You can
change the direction by pressing one of the number keys, from 1 to
8. For the diagonal directions, press keys 1 to 4. You can read the
directions from the graphics characters on these keys:

1:NW
2:NE
3:SE
4:.SW

The other directions are indicated by the arrows shown on keys
5to8:

: left

: down
:up

: right

[« <3N e W)

IF CX=U THEN LET HM=U

IF CY¥=U THEN LET UM=U

IF CY=40 THEN LET UM=-U
IF I%="M" THEN UNPLOT CX,cCvy
LET CX=CX+HM

LET CY=CY+UM

PLOT CX,CY

RETURN

REHM DIRECTION SUBROUTINES
LET HM=-U

LET UM=U

PRINT AT Z,Z;"NU "
RETURN

LET HM=U

LET UM=

PRINT HT Z,Z;"NE

RETURN

LET HM=U

LET UM=-U

, INT AT Z, z}%E o
% 1A LS
L ;1# i

Figure 3.11: The Picture Program (cont.)

84 Your Timex Sinclair 1000 and ZX81

Try pressing all eight of these keys, one at a time. Each time you
press a key, the word in the upper-left corner of the screen will
change.

Once you have selected the direction in which you want to
move, you can move the pixel by pressing one of two keys. The [M]
key simply moves the pixel. Press the key once to move it one
address in the indicated direction, or hold your finger down on the
[M] key for continual movement.

The [P] key (for “print”) leaves a trail of pixels behind when the
pixel moves. Again, you can either press the key for one move at a
time, or you can hold the key down for a number of moves. Take a
moment to experiment with both of these keys in several different
directions now.

You can erase any pixel on the screen by moving backwards
over it. Press the correct direction key, toward the pixel you want to
erase, then press the [M] key.

If you want to start over with a fresh screen, press the [C] key to
“clear” the current drawing away.

LET UM=-U

PRINT AT Z,Z; "5V
RETURN

LET HM=-U

LET UM=Z

PRINT AT Z,Z, "LEFT
RETURN

LET HM=Z

LET UM=-U

PRINT RT Z,Z; "DOUWN
RETURN

LET HM=Z

LET UM=U

PRINT AT Z,Z;"UP
RETURN

LET HM=U

LET UM=Z

PRINT AT Z, Z,“RIGHT"
RETURN

Wﬂé‘gu@ w

Figure 3.12: The Picture Program (cont.)

The Plot Thickens: A Shont, Graphic, Course in BASIC 85

When the moving pixel reaches one of the sides of the screen it
will automatically be “reflected” back into the screen. If it is mov-
ing in a diagonal direction, the angle of reflection will be 90°. If it is
moving up, down, right, or left, it will be reflected in the opposite
direction.

You’ll find that the longer you play with this program, the
better the results will become. You can use it to draw almost any-
thing on your screen. The main limitation, of course, is one of
resolution, determined by the size of the pixel. Figure 3.14 shows a
sample picture drawn using this program.

Inside the Program

Type the BREAK key to interrupt the program; then type EN-
TER to list the program line on the screen. This program is orga-
nized into a main controlling section, and a number of subrou-
tines. We’ll first see how the main program section works together
with the subroutines; then we’ll look in detail at some of the lines of
the program.

Figure 3.13: Starting the Picture Program

86 Your Timex Sinclasr 1000 and ZX81

This program demonstrates the tremendous power of subrou-
tines. The main tasks of this program are organized into their own
individual subroutines. The result is that the program is easy to
understand, and easy to correct or revise. Once you know the task
of each subroutine, you’ll know exactly where to look if you want to
change some detail of the program.

Briefly, here is how the program is organized. Eight short sub-
routines at the end of the program are charged with the task of
changing the direction of movement. Each time you press one of
the direction keys, one of these subroutines is called. These subrou-
tines control the values of two variables, named HM (for “horizon-
tal movement”) and VM (for “vertical movement”). These two
variables, in turn, determine the direction the pixel will move in
when you press the [P] key or the [M] key. The variables HM and
VM always have one of three values:1, 0 or — 1. Besides control-
ling these variables, the direction subroutines print the current di-
rection in the upper-left corner of the screen. Each of these subrou-
tines is only four lines long, and each one begins on a line number

H=HOUE P =FRIMT = ERR

Figure 3.14: A Sample Picture

The Plot Thickens: A Short, Graphic, Course in BASIC 87

that is a multiple of 100 (500, 600, 700 . . .). This is a very signifi-
cant fact for the GOSUB statement that calls these subroutines, as
we will soon see.

The subroutine that moves the pixel is located at line 300. It is
longer and more complicated than the direction subroutines. First
it must test to see if the current position of the moving pixel is at one
of the four edges of the screen. If it is, the subroutine must adjust
one of the variables HM or VM to reverse the direction of move-
ment. Then the subroutine must determine whether the pixel is
Jjust moving, or whether it is leaving a trail behind it (i.e., whether
you are pressing the [M] key or the [P] key). If the pixel is just
moving, the previous position on the screen must be erased (with
the UNPLOT command). Finally, this subroutine determines the
new address of the pixel, by adding HM and VM to the current
address, and PLOT's the new position.

Lines 110 to 170 read the keyboard and call the correct subrou-
tines, depending on which key you have pressed. These lines form
an endless loop, as you can see from line 170:

170 GOTO 110

The result is that the computer spends much of its time simply
waiting for you to press a key on the keyboard. In this program,
unlike other programs you have seen up to now, the keyword IN-
PUT is not used to read the keyboard. Instead, we use the pro-
gramming function called INKEY$ (located below the [B] key on
your keyboard). We’ll see how INKEY$ differs from INPUT
when we discuss these lines in detail.

Finally, since we’ve moved our way backwards through the
program, lines 10 to 90 are what we might call the “initialization”
section of the program. Line 10 clears the screen (with the CLS
command). Line 20 prints the reverse-video instruction line at the
top of the screen, making use of the TAB function to position the
message five spaces forward from the left edge of the screen. Lines
30 to 60 define (or imtialize, we might say) several very important
variables; we might as well begin our detailed discussion of the
program with these variables.

Lines 30 and 40 define the variables U (for “unity”) and Z (for

“zero”):

30LETU =1

88 Your Timex Sinclair 1000 and ZX81
40LETZ =0

The reason for these variables is a rather long story. It has more to
do with the nature of your computer than with this particular pro-
gram. As you know, your computer has a limited amount of mem-
ory. This program is designed to fit into—and operate with—the
computer’s original 2K of memory. When you start writing rel-
atively long programs like this one—especially programs that
make heavy use of the TV screen when they are performed—you
will begin looking for ways to conserve memory space. Don’t for-
get that the computer has to use its memory for several different
tasks when you are running a program. Part of the memory is
reserved for storing the program instructions themselves; another
part is required for keeping track of the information that is being
sent to the screen; and still more memory is needed for other, less
visible, tasks. One obvious way that you can conserve memory,
then, is to use as little of it as possible for the program itself. In the
picture program, that’s where the variables U and Z come in.

The computer needs much less memory to store a character
than it does a number. The computer has a special system for
storing numbers; this system (called floating-point binary, in case you
want to investigate further) is designed to store numbers as accu-
rately as possible in a relatively small amount of memory. Accuracy,
of course, becomes important to you when you start using your
computer for calculations. This system takes up several times more
memory for each literal number than is required for a character. So
each time a literal number appears in your program listing, you
should ask yourself if there is some way to replace that number with
a letter.

In the picture program, the numbers 0 and 1 are used many
times. Knowing this, we can perform a neat little trick to save a lot
of memory space. We can assign the values 0 and 1 to two variables
at the beginning of the program, and then use those variables
throughout the program to represent the values 0 and 1. This is
exactly what lines 30 and 40 do. As a result, when you read this
program, any time you see the variable names Z and U, you should
think of them as the “constant” values 0 and 1. This may make the
program slightly harder for you to decipher, but it’s worth it in the
end. After all, your memory capacity is considerably larger than
the computer’s.

The Plot Thickens: A Short, Graphic, Course in BASIC 89

The other two variables defined near the beginning of the pro-
gram will not take nearly as long to explain. The variables CX and
CY represent the current horizontal position and the current verti-
cal position, respectively. (If you are mathematically oriented, you
know that the letters X and Y are traditionally used as variable
names for the horizontal and vertical positions on a graph.) Lines
50 and 60 initialize these two variables:

S0LETCX = 31
60 LETCY = 21

This means that the pixel you see at the approximate center of the
screen when the program begins is at the address 31,21.

Line 70 is the first of several REM lines that appear in this
program. The keyword REM stands for remark. (It is located
above the [E] key on your keyboard.) REM lines do not result in
any action by the computer; during the program run, the com-
puter ignores them. The usefulness of REM lies in the opportunity
it gives you to “document” your program within the program list-
ing itself. After the keyword REM you can write anything you
want. Usually you’ll write a few short words—your own words,
not BASIC words—that describe what is happening at a certain
point in the program. Then, each time you look at your program
listing, the REM lines will be there to help you understand what
the program does.

Unfortunately, REM lines take up room in the computer’s
memory. For this reason, you should use them sparingly. In addi-
tion, if you find yourself running short of computer memory while
you are developing a program, you can always begin deleting (or
condensing) any REM lines that you have written. But in general
you’ll find that a well-placed, well-written comment, in the form of
a REM line, can save you lots of time when you are trying to revise,
correct, or simply understand a program.

The initialization section of the program has two more lines.
Line 80 initializes the direction of movement by calling one of the
direction subroutines:

80 GOSUB 1100

The subroutine at line 1100 is the one that sets the direction to

“UP. ”

90 Your Timex Sinclasr 1000 and ZX81

Finally, line 90 plots the initial pixel:
90 PLOT CX,CY

This is the pixel that is at the center of the screen at the beginning of
the program run.

The initialization section of the program is performed once
when the program begins, and again whenever you press the [C]
key to clear the screen. Line 130 uses a GOTO statement to “reini-
tialize” the program for an input character of “C”’:

130 IFI$ = “C" THEN GOTO 10

Line 110 reads the keyboard, using the INKEY$ command.
Each time INKEY?$ is performed, the computer “scans” the key-
board once to see if you are pressing a key. If you are pressing
exactly one key, INKEY$ returns the character represented by
that key—a letter “A” to “Z,” or a digit “0” to “9.” Notice that
INKEY$ treats the digits as characters, not as numbers. This is an
important distinction. It means that the computer is not storing
these particular digits as numbers to be used for calculations (that
s, not in the “floating-point binary” form) but rather as simple
characters, like any others on the keyboard.

Since we want the computer to pay constant attention to keys
pressed on the keyboard, we have to write the INKEY$ command
within a loop:

110IF INKEY$ = ““ THEN GOTO 110

The GOTO statement, after THEN, sends control of the program
right back to the beginning of the same line! This line, para-
phrased, says, “If INKEY$ returns no character at all (meaning
that no key is being pressed on the keyboard), go back to the begin-
ning of the line and perform INKEY$ again.” As long as you’re not
pressing a key, the computer is stuck performing line 110 time after
time. But as soon as you do press a key, the true-or-false statement:

INKEY$ = ““

becomes false, and control of the program proceeds to the next line.

Since you have already run this program, you know that IN-
KEY$ is completely different from INPUT in the action that it
causes. INPUT prints each character that you type in the lower-left
corner of the screen. INPUT also waits for you to press the EN-

The Plot Thickens: A Short, Graphic, Course in BASIC 91

TER key before it actually stores your input data in a variable.
INKEY$ does neither of these things; it simply reads a single char-
acter from the keyboard and returns that character to the program.

Once INKEY$ has returned a character, line 120 stores the
character in the string variable I$:

120 LET I$ = INKEY$

Then, lines 130, 150, and 160 test the value of I$—in three differ-
ent IF statements—to decide what to do next. We’ve already seen
that line 130 sends control of the program back to the beginning, to
clear the screen.

Lines 150 and 160 illustrate a feature of the IF statement that
we haven’t discussed yet—the use of the words AND and OR in
true-or-false statements. These two words allow you to test for
more than one equality or inequality in a single IF statement.

Line 150, which tests for the P or M keys, contains the word
OR:

150 IF I$="“P“ OR I$ = “M"“ THEN GOSUB 300

In other words, if the variable I$ contains either the character P or
the character M, then line 150 calls the subroutine at line 300. A
statement containing the word OR is true if either or both of the
elements are true.

Line 160 is the most difficult line in the program. It tests to see
if you are pressing one of the direction keys, “1” to “8”:

160 IF I$> =“1“ AND I$ < = “8* THEN
GOSUB (100 + (VAL (I$) + 4))

A statement containing the word AND is true only if both of the
elements are true. Thus, this line calls a subroutine only if the
value of I§ is between the character “1” and the character “8”. The
GOSUB statement in line 160 is different from other GOSUBs
we’ve seen in that it calculates the line number of the subroutine it
calls. We will see that this gives line 160 the ability to call any one of
eight different subroutines—a very powerful feature, indeed. The
key to this feature lies in the expression after the word GOSUB:

(100 « (VAL (I$) + 4)

There are some things about this expression that you will under-
stand better after you’ve read Chapter 4. (In fact, line 160 should

92 Your Timex Sinclair 1000 and ZX81

continue to provide you with food for thought for a long time.
Don’t worry too much if you don’t understand it all right away.)
Briefly, this expression produces a multiple of 100 between 500 and
1200; you’ll recall that these are the line numbers of the direction
subroutines. The line numbers are calculated in three steps:

1. The function VAL converts the value of I$ from a character
(between “1” and “8”) to a number (between 1 and 8).

2. The expression adds 4 to this number, yielding a number
between 5 and 12.

3. The result of step 2 is then multiplied by 100, giving a num-
ber between 500 and 1200.

The important thing to realize is that you can write a single
GOSUB statement that will call one of several different subrou-
tines. The statement can “decide” which subroutine to call, based
on a calculation that includes a variable.

To summarize, lines 130, 150, and 160 can result in a subrou-
tine call, but only if you are pressing one of the keys that has mean-
ing to this program—C, M, P, or 1 to 8. If you press any other key,
none of the IF statements will result in a subroutine call, and the
program will simply continue on to line 170:

170 GOTO 110

Thus, one way or another, the program always returns to the
INKEY$ statement in line 110.

Now let’s look briefly at the subroutines, beginning with the
direction subroutines. These short subroutines all have the same
format. Each one has two LET statements that assign values to the
variables HM and VM. In the subroutine that moves the pixel, the
values of these two variables are used to adjust the current address
in the correct direction. To see how this works, look at the “NW?”
direction subroutine, at line 500. It sets the horizontal movement
to -1 and the vertical movement to 1:

500LETHM = -U
510LETVM = U

You can see that subtracting 1 from the horizontal part of a pixel
address will move the pixel to the left (i.e., “west”). Likewise,
adding 1 to the vertical part of the address will move the pixel up

The Plot Thickens: A Short, Graphuc, Course in BASIC =~ 93

(i-e., “north™).
Each of the direction subroutines ends by printing the new di-
rection in the upper-left corner of the screen (at address 0,0):

520 PRINT AT Z,Z; “NW

In lines 350 and 360 of the pixel-moving subroutine, the cur-
rent address (CX,CY) is changed by the values of HM and VM:

350LETCX = CX + HM
360LETCY = CY + VM

Line 350 can be paraphrased as “add the value of HM to the value
of CX, and store the result in the variable CX.” The old value of
CX is lost, as is the old value of CY in line 360.

Once the new address has been calculated, the pixel can be
placed on the screen:

370 PLOT CX,CY

The subroutine at line 300 has two more features you should
study. Lines 300 to 330 test the current address to see if the pixel has
arrived at one of the four edges of the screen. If it has, the value of
HM or of VM must be changed to move the pixel back into the
screen area. For example, if the horizontal address reaches 63 (the
right side of the screen), HM, the horizontal movement variable,
must be changed to — 1 to move the pixel to the left:

300IFCX = 63 THENLETHM = - U

Finally, in line 340, the pixel-moving subroutine tests to see if it
should erase the current pixel before placing the new pixel. If you
pressed the [M] key, UNPLOT erases the pixel at CX,CY:

3401IF1$ = “M"“ THEN UNPLOT CX,CY

If you pressed the [P] key, the UNPLOT command is not per-
formed, and the current pixel stays on the screen along with the
next one.

By studying this program carefully you can refine your under-
standing of several BASIC statements, including LET, IF, and
GOSUB. In addition, this program introduces you to several new
words in the BASIC vocabulary—REM, INKEY$, TAB, AND,
OR, and VAL. If all this was too much to absorb in one reading,
you should come back to this program later, perhaps after you have

94 Your Timex Sinclair 1000 and ZX81
read the final chapters of this book.

SUMMARY

We’ve covered alot of ground in this chapter. The following list
will help you to recall each of the BASIC commands you have
learned and to review what they do:

® defining variables and giving them values—LET, INPUT

® reading information from the keyboard—INPUT, IN-
KEY$

® displaying information on the screen—PRINT, AT, TAB,
CLS

¢ displaying graphics on the screen—PLOT, UNPLOT

® repeating instructions, creating loops—FOR, TO, STEP,
NEXT, GOTO

¢ controlling the order of performance—GOTO, GOSUB,
RETURN

¢ making decisions—IF, AND, OR, THEN
® documenting your program—REM.

C/zapter’4

Take Five:
Numbers on Your

Computer

INTRODUCTION

In this chapter, you will learn how to use your computer to
perform numerical calculations. The chapter begins with a discus-
sion of the arithmetic operations, followed by a brief survey of some
of the more common arithmetic functions. You’ll see several ex-
amples of all these features in action.

You’ll also find two important and useful programs presented in
this chapter. The first program turns your computer into a “super
calculator,” complete with operations, functions and memory.
The second program, the longest program in this book, will allow
you to create bar graphs for any kind of numerical data. You’ll
learn how to use both of these programs, and you’ll have the oppor-
tunity to expand your understanding of BASIC programming by
studying the structure and logic of the programs. In particular,
you’ll learn about arrays in the second program. An array is an
essential structure in BASIC programming that allows you to store
many items of data under a single variable name.

CALCULATIONS ON YOUR COMPUTER

The arithmetic operations that your computer can perform are
addition, subtraction, multiplication, division, and exponentiation.
The symbols used for these operations are:

+ addition
- subtraction
* multiplication

96 Your Timex Sinclair 1000 and ZX81

/ division
* ok exponentiation
One way you can instruct the computer to perform a calculation is
in a PRINT statement. The computer will begin by evaluating the
calculation, and then will display the results on the screen. To see

how this works, enter each of the following as immediate com-
mands:

PRINT 15.193 + 6.5
PRINT 1235 — 872
PRINT 18 » 97
PRINT 183/5
PRINTO »« 3

Each time you enter one of these commands, you will see the result
of the calculation, almost immediately, displayed at the top of the
screen. The last of these five PRINT commands is an example of
exponentiation. The expression “9 ** 3"’ means 9 to the power of
3, or9 cubed. The result, as you can see, is9 x 9 x 9, or 729. (The
“*x” symbol is a shift character located on the [H] key.)

You can also include multiple arithmetic operations in a single
statement. For example, the following statement results in the sum
of two products:

PRINT9 +8 + 5+ 3

The number displayed on the screen is 87, the sum of 72 and 15.
Notice that the computer first evaluated both of the multiplication
operations, then added the two products together. This is an essen-
tial point. When the computer evaluates multiple operations, it
does so in a fixed order. You must always be aware of this order of
operations, or risk receiving erroneous results.

The order of operations is as follows:

1. exponentiation, from left to right;
2. multiplication and division, from left to right;
3. addition and subtraction, from left to right.

To explore this fixed order, enter the following line:
PRINT1 +2%+3+x4 -5

Could you have predicted the correct result, 28? Here is how the

Take Five: Numbers on Your Computer 97

arithmetic statement is evaluated: First, the exponentiation, 2 **
3, which equals 8; then the product, 8 * 4, resulting in 32; finally,
the addition of 1 and subtraction of 5, giving 28.

Obviously, if you had entered this line expecting the computer
to perform the calculations from left to right—no matter what the
nature of the operations—you would have been very surprised.
Performing each operation in a left-to-right sequence, the result
would be 103. (Try it: 1 plus 2 is 3; 3 cubed is 27; 27 times 4 is 108;
108 minus 5 is 103.) Clearly, you must always think carefully
about the computer’s order of operations whenever you formulate
an arithmetic calculation.

Often, however, you will want to perform calculations that do
not conform conveniently to this fixed order. Fortunately, BASIC
gives you a way to override the normal order and establish your
own order. To do this, you must use parentheses in arithmetic
expressions.

When part of an expression is enclosed within parentheses, that
part is evaluated first. For example, enter these two statements,
one at a time:

PRINT1 +2+3
PRINT (1 + 2) + 3

In the first statement, the multiplication is performed first, and
then the addition, yielding 7. In the second statement, the com-
puter first evaluates the sum that is enclosed in parentheses, then
multiplies the sum by 3; the result is 9.

You can also write statements that have levels of parentheses.
(Parentheses inside other parentheses are sometimes called nested
parentheses.) The computer deals with the innermost parentheses
first, then works on to the outermost. The following statement,
then, with parentheses, would be evaluated from left to right:

PRINT((1 + 2) ++3) x4) - 5

The result of this statement, as we’ve already discussed, will be
103. Notice an important fact about nested parentheses: Each open-
parenthesis symbol “(”’ must be matched by a close-parenthesis
symbol “)”. If you accidently write an expression that contains
unmatched parentheses, the computer will refuse to perform the
calculation.

We’ve already seen that arithmetic expressions can contain

98 Your Timex Sinclasr 1000 and ZX81

variables; the expression will be valid as long as the variables it
contains are already defined. This applies to LET statements,
PRINT statements, and to most other BASIC statements where
numerical values are called for. To see for yourself that this is true,
enter the following sequence of instructions as immediate com-
mands:

LETA =1
LETB=A+2
LETC=B+»3
LETD=C+«4
LETE=D-5
PRINTA,B,C,D,E

Each LET statement in this sequence uses the value of the variable
defined in the previous statement. The PRINT command then
displays the values of all the variables. Notice that the final variable,
E, contains the value 103, the result of the expression (1 + 2) **
3) * 4) - 5. The other variables contain the values of the interme-
diate calculations.

The PRINT statement above illustrates an additional feature
of BASIC that we haven’t discussed yet: the use of commas to sepa-
rate elements of the display. A comma tells the computer to space
the elements apart by half a screen width across. Thus, the result of
this PRINT statement is the following display:

1 3
27 108
103

The difference between a semicolon and a comma in a PRINT
statement is very important. The semicolon, you’ll recall, instructs
the computer to display elements side-by-side.

You should be aware of one further point involving calculations:
Division by zero is not defined for the computer; writing an in-
struction that results in division by zero will end in an error mes-
sage. Knowing this, you would not intentionally write a statement
such as:

LETE=1/0

But problems may often arise when you write division statements

Take Five: Numbers on Your Computer 99

that contain variables in the denominator; for example:
LETE=1/D

If the variable D should ever contain the value zero when this LET
statement is performed, the computer will give you an error mes-
sage. This can be a particularly difficult problem in a program in
which you’re not sure in advance what values D will take. One way
of avoiding the problem is to write the LET statement as a clause in
an IF statement:

IFD< > OTHENLETE =1/D

This statement insures that the LET instruction will only be per-
formed if the variable D does not contain a value of zero.

You'’ve seen that your computer’s keyboard offers you several
useful mathematical functions. You can type them by shifting the
keyboard into the function mode. Let’s explore the use of these
functions in calculations.

ARITHMETIC FUNCTIONS
We’ll look at the following functions:

® ABS (for absolute value; located below the [G] key);
® INT (for integral value; located below the [R] key);
® SGN (for sign; located below the [F] key);

® SQR (for square root; located below the [H] key).

These are functions you might well find yourself using, even if
you are not mathematically inclined. Your computer also offers
other sets of functions, for specialized uses. These include the trigo-
nometric functions (SIN, COS, TAN, ARCSIN, ARCCOS,
ARCTAN) and the exponential functions (EXP, LN). If you are
interested in these functions, you can read about them in Appendix
A,

The absolute value function, ABS, supplies the positive value of
any number. In other words, if a number is negative, ABS makes it
positive. If a number is positive, ABS does not change it. Enter the
following two commands to see how ABS works.

PRINT ABS -45
PRINT ABS 45

100 Your Timex Sinclair 1000 and ZX81

The result of both commands is 45. Notice that the minus sign in
the first statement simply expresses the sign of 45, 7ot an operation
between two different numbers.

The INT function eliminates the fractional part (if any) of a
decimal number. For example, try these commands:

PRINT INT 19.34
PRINT INT 19.81

The result of both the statements is 19. Notice that INT does not
round up; it simply truncates to the next lower integer. Later in this
chapter we will see a way to use INT to create a rounding function.

The function SGN always results in one of three values, de-
pending on the sign of the number you write after it:

-1 ifthe number is negative
0 if the number is zero
1 ifthe number is positive.

The statement:
PRINT SGN - 45, SGN O, SGN 45

produces the sequence 1,0, and 1.
Finally, SQR gives the square root of a positive number. For
example:

PRINT SQR 81

results in 9. If you type a negative number after SQR, the computer
will give you an error message; the square root of a negative num-
ber is not defined.

Functions can be part of statements that include more than one
arithmetic operation; but, again, you’ll have to pay attention to the
order of operations. Functions are evaluated before any of the five
arithmetic operations (unless those operations are enclosed in pa-
rentheses). For example, enter the statement:

PRINT 10 «» SQR 81 + 19

The result is 109. The computer first finds the square root of 81,
giving 9; then it multiplies 9 by 10, giving 90; finally it adds 19,
giving 109. Compare this to the statement:

Take Five: Numbers on Your Computer 101

PRINT 10 » SQR (81 + 19)

This statement yields 100. The computer first performs the addition
located between parentheses, then takes the square root, then per-
forms the multiplication.

Finally, functions can work on the results of other functions. In
other words, you can use functions in complex expressions such as:

SQRINT9.73

This expressions says, “find the square root of the integral value of
9.73.” If you enter this expression into your computer as part of a
PRINT statement, you’ll see that the result is 3.

In the next section we’ll learn more about using the INPUT
statement for calculations, and we’ll run a short program that will
help us experiment with this feature.

CALCULATIONS WITH THE INPUT STATEMENT

Type NEW to clear any program lines out of your computer’s
memory; then enter the following three-line program:

10 INPUTV
20 PRINTV
30GOTO 10

On the surface this doesn’t look like a very useful program. Line 10
reads a numeric value from the keyboard, and stores the value in
the variable V. Line 20 displays the value of V on the screen. Line
30 sends control of the program back up to line 10, forming an
endless loop. When you run the program, the computer will wait
for you to enter a number from the keyboard, and then will display
the number on the TV screen.

As we will see, the computer can actually read arithmetic ex-
pressions from the keyboard during the run of a program. This is a
unique, and very useful, feature of the T/S 1000’s BASIC. Instead
of merely typing a number at the keyboard, you can type any valid
arithmetic expression, including any of the five arithmetic opera-
tions, and any numerical functions. The computer will immediately
perform the calculations specified in the expression and then will
store the result of the calculations in the INPUT variable, in this
case V.

102 Your Timex Sinclair 1000 and ZX81

Run the program now and try it out. Begin by entering a simple
number, say 10; the number will appear at the top of the screen.
You can see that the program is working.

Next enter an expression. Try this one:

10 » SQR49 + 16/8

The number 72 will be displayed at the top of the screen. The
computer has evaluated the expression, storing the result, 72, in
the variable V.

Now enter the expression:

V/i9

‘The computer will respond by displaying the number 8 on the
screen. Your expression V /9 meant, “divide the current value of
the variable V by 9.” Since V held the value 72 from the previous
calculation, the result of the division is 8.

"To summarize, then, we have seen that the computer will accept
any valid numeric expression in response to a numeric INPUT
statement. The expression may even include variables, as long as
the variables have already been defined.

We’re now ready to look at the program that turns your com-
puter into a super calculator.

BUILDING A SUPER CALCULATOR

The super-calculator program appears in Figure 4.1. Type the
program carefully into your computer, and then run it. You’ll see
the message:

SUPER CALCULATOR
in reverse video, and the L cue, between quotes, indicating that the
computer is waiting for a string input.

You can use this program to find the answer to any calculation
problem. The expression you type into the computer may include:

® all five arithmetic operations;
® any of the mathematical functions on your keyboard,;

® complex expressions, with nested parentheses and nested
functions;

® two variables: M1 and M2, representing the program’s

h'«&“ i

Take Five: Numbers on Your Computer ~ 103

memory function. (We will discuss this feature shortly.)

In other words, you can enter any calculation that the computer
will accept as a valid numerical expression. The program is in the
form of an endless loop; you can use it to perform as many calcula-
tions as you want.

Let’s give it a try. Type the following expression at the keyboard:

1 + INT(SQR (2 » 3) » 4)

Press the ENTER key and watch the action. The screen goes blank
very briefly. Then, when the information returns, your screen
should look like Figure 4.2. Study the screen carefully to find out
everything it has to tell you.

First, the expression that you entered into the computer is
“echoed” for you in the center of the screen. This is important;
how often have you performed a long series of calculations on a
pocket calculator, and then, when the result appeared, wondered
nervously if you’d pressed all the correct keys? Input errors are
probably the most common cause of incorrect results when we use

10 LET M1=0
g PRINT AT 21,0; " EIEEENEENEN

INPUT Cs
ST

CLS

LET RESULT=VAL Cs
LET M2=M1

LET Ml:RESULT
PRINT AT 10 {
PRINT AT 0,0

PRINT AT 1, 0,"M2
SLOU

GOTO 20

Figure 4.1: The Super-Calculator Program

104 Your Timex Sinclair 1000 and ZX81

machines to do our calculations. So the first thing this program tells
you, even before the answer to your problem, is the exact expression
that you typed into the computer. You can study this echo at your
leisure to make sure it actually represents the calculation you
wanted to perform. After the echo, the computer gives you the
answer to the problem. In this case, the answer is 10.

In addition, this program sets up two memory variables for
you. They are called M1 and M2; after the first calculation their
current values are always displayed for you in the upper-left corner
of your screen. M1 is the result of the most recent calculation the
computer has performed. M2 is the result of the calculation just
previous to the most recent one. As you can see on your screen, the
current values of M1 and M2 are:

M1 =10
M2 =0

The value of M1 is the result of the calculation that is currently

1+INT (SQR (2x3)%4) = 10

Figure 4.2: An Answer from the Super-Calculator Program

Take Five: Numbers on Your Computer 105

displayed in the center of the screen. Since this was the first calcula-
tion you have performed during this run of the program, M2 is still
equal to zero. (Both M1 and M2 have values of zero at the begin-
ning of the program.)

Now type a second expression for the program to evaluate:

(18 %+ 2)/5

The answer, as shown in Figure 4.3, is 64.8. Look at what has
“happened to the two memory variables:

M1 = 64.8
M2 = 10

The most recent result is shown now as M1. The result of the first
calculation, 10, is shown as M2. The purpose of these two memory
variables is this: you can use them in expressions that you type into
the computer. For example, enter the following expression as your
third calculation:

M1/M2

(18%%2) /S =

Figure 4.3: A Second Calculation

106 Your Timex Sinclair 1000 and ZX81

This means, “divide the current value of M1 by the current value
of M2.” The computer will give you the answer:

M1/M2 = 6.48

Having access to these two memory variables will often be extremely
useful to you when you have a long series of calculations to perform.
Their current values will be stored and displayed at each step.

Keep practicing with this program until you understand all of
its features. You may find out rather soon that the program run is
interrupted, and an error message is displayed, if you type an ex-
pression that the computer cannot evaluate to a number. This can
happen in a number of ways; any of the following errors will result
in termination of the program:

® entering an expression that contains an uneven number of
parentheses;

¢ including an undefined variable in your expression (i.e., any
variable other than M1 or M2);

® requesting a calculation that results in division by zero;
® using a function that does not result in a number.

If you make one of these mistakes, you can, of course, get back
into the program by simply entering the RUN command. The
disadvantage of doing this, however, is that you will lose the cur-
rent values of the two memory variables, M1 and M2. (The com-
mand RUN, you’ll recall, clears all current variables before begin-
ning the program.) A better way of restarting the program, then, is
to enter the immediate command:

GOTO 100

When you do this, the unchanged current values of M1 and M2
will appear on the screen, and the program will be ready for your
next calculation. We will see exactly why this GOTO command
works when we examine the program’s inner structure. In general,
you can always restart any program by using a GOTO statement
instead of RUN. The result is that the current values of any variables
in the computer’s memory will be maintained.

Now let’s take a look at the program itself. You can display the
program on your screen by entering the STOP command to end

Take Five: Numbers on Your Computer 107

the program run, and then pressing the ENTER key again. Or you
can refer back to Figure 4.1, where the program listing appears.

INSIDE THE SUPER-CALCULATOR PROGRAM

The first three lines of the program are straightforward. Line
10 initializes the memory variable M1 to zero; line 20 displays the
title of the program on the screen; and line 30 reads the input from
the keyboard. Notice that the input is stored in the string variable
C$:

30 INPUT C$

The expression is not yet evaluated as a calculation, as it would be if
the variable were numeric. As far as the computer knows at this
point, C$ contains an ordinary string of characters.

Line 40 puts the computer into the fast mode:

40 FAST

We’ve already seen the FAST command in action a couple of times
in earlier programs in this book, but we’ve never discussed exactly
what it does. In the fast mode the computer stops sending in-
formation to the TV screen during the time that it is performing
calculations. As a result, calculations are completed much faster.
When you are running a program, you can tell it is in the fast mode
if the screen goes blank at certain points in the program. In the
super-calculator program, you’ll recall, the screen goes blank just
after you enter the expression you want to calculate. The computer
is devoting its resources to calculating, and as a result the job is
done quickly.

As an experiment, you might try deleting line 40 and then run-
ning the program to see what difference it makes. You’ll find that
calculations take noticeably longer to perform. (Make sure you put
line 40 back into the program before you continue.)

Line 50 clears the screen with the CLS command. Line 60 is the
real workhorse statement of this program:

60 LET RESULT = VAL C$

As we saw in Chapter 3, the VAL function finds the numeric equiv-
alent of a string. In order for VAL to work at all, of course, the
string has to be made up of characters that can be converted into

108 Your Timex Sinclair 1000 and ZX81

numbers; this is why the expressions you type into this program
must all be valid numeric expressions. When you make a mistake
by typing some invalid expression, the error message you’ll get is:

C/60

The 60 means that the program terminated at line 60. As you can
read in Appendix B, the C error code means that you gave an
invalid string expression to the VAL function.

If all goes well, then, the LET statement in line 60 stores the
calculated result of your numeric expression in the numeric variable
RESULT. Lines 70 and 80 reset the values of the memory varia-
bles, M1 and M2. First, M2 receives the result of the previous
calculation, which is currently stored in M1:

70 LETM2 = M1
Then M1 receives the result of the latest calculation:
80 LET M1 = RESULT

The next three lines prepare the screen. Line 90 displays the
original expression (still stored in the string variable C$) and the
answer (stored in M1):

90 PRINT AT 10,3;C$; “ = “; M1

Lines 100 and 110 display the memory values in the upper-left
corner of the screen:

100 PRINT AT 0,0; “M1 = “; M1
110 PRINT AT 1,0; “M2 = “; M2

This is why you can use the command:
GOTO 100

to restart the program in the event of an error termination.
Finally, line 120 returns the computer to the SLOW mode and
line 130 sends control of the program back up to line 20, forming
the endless loop.
Before moving on to the final topic of this chapter, run the
super calculator program again for one last experiment. Type the
expression:

5x+20

Take Five: Numbers on Your Computer 109

at the keyboard and press the ENTER key. You probably guessed
in advance that the expression “5 to the 20th power” would result
in a very large number, but the display on the TV screen may be a
surprise to you. Here’s what it looks like:

5 »+ 20 = 9.5367432E + 13

The answer is expressed in what is called scientific notation. The
computer automatically switches into this notation for very large
numbers like this one. The notation is not as hard to read as it may
seem at first if you’re not familiar with it. The letter E, toward the
end of the answer, stands for exponent, and the expression E + 13
thus means 10 to the 13th power, or:

10,000,000,000,000.

Thus, the full expression given in scientific notation means:

9.5367432 x 10,000,000,000,000

or:

95,367,432,000,000

When you consider that the computer can produce numbers that
are much larger than this one, you may begin to see the rationale
for using scientific notation. It is simply a more economical way of
displaying large numbers on the screen.

If you are interested in pursuing this subject further, you can
use the super-calculator program to answer a number of questions
that might come to mind. With a little experimentation, you can
discover many things about how your computer handles numbers:

® As numbers get larger and larger, when does the computer
start displaying them in scientific notation?

® What is the largest number your computer can handle?

® How accurately does the computer display very large num-
bers? (Try typing 5 *#* 15. You know that any power of 5

should end in the digit 5. Does the computer’s answer end in
5?)

110 Your Timex Sinclasr 1000 and ZX81

CREATING BAR GRAPHS

The next program we’ll look at is designed to produce bar
graphs on your TV screen. A bar graph provides a convenient, and
often dramatic, means of comparing a series of numbers. Each
number is represented by a bar; the larger the number, the longer
the bar. When you look at a bar graph, you can see at a glance the
relative importance of each category represented on the graph. For
this reason, you may want to use the bar graph program to present
important information whenever you are more interested in relative
values than in actual data.

Since the bar graph deals with lists of data, it is time for you to
learn about the BASIC data structure that is designed to handle
such lists. This structure is called the array. We’lllook at arrays, and
how to define them, before moving on to our program.

Arrays

You know by now that a simple variable can hold exactly one
value at a time. If you assign a new value to a variable—using LET
or INPUT—the old value will be lost forever. The simple variable
is a convenient means of storing any number of data items that are
not related to each other in any special way except that they are all
needed in the program.

Often, however, when you use your computer to process data,
you’ll have lists or tables of related data that you’d like to store in
the computer’s memory. Dozens—or even hundreds—of data items
might be involved, so it would be very inconvenient to have to
define a separate variable for each item.

BASIC provides special data structures, called arrays, that are
perfect for storing large quantities of data. Arrays are said to have
dimensions. A one-dimensional array is used for storing a list of data
items. A two-dimensional array can store a table of data items, ar-
ranged in rows and columns. On your T/S 1000 you’ll probably
seldom need to use arrays that have more than two dimensions,
although your BASIC does allow multi-dimensional arrays. The
bar graph program uses one-dimensional arrays, so we will limit
our discussion to storing /sts of data.

Suppose you have a list of 15 numbers that you want to enter
into your computer’s memory. You want to design a program that

Take Five: Numbers on Your Computer ~ 111

will perform three tasks:

1. read the numbers from the keyboard during the program
run;
2. perform some calculations on the numbers;

3. display the numbers again on the screen along with the
results of the calculations.

You can begin by defining an array that will hold all 15 of the
numbers at once. Let’s say you decide to call the array N (for
numbers). Here’s how you would define the array, in the first line of
your program:

10 DIM N(15)

The keyword DIM, located above the [D] key, stands for dimension.
A DIM statement specifies the four essential characteristics of an
array: :

1. the name of the array
2. the type of data it will hold (numeric or string)
3. the number of dimensions it has

4. the number of data items allowed in each dimension. (This
last characteristic is referred to as the length.)

Here are the characteristics of the array defined in line 10,
above:

1. its name is N;

2. it is a numeric array (since its name does not end in a §
character);

3. it has one dimension (since there is only one number speci-
fied inside the parentheses);

4. the length of the array is 15.

When the computer comes to this line in your program, it auto-
matically sets aside room in its memory for 15 numbers under the
array name N.

With the array defined, you need some way to identify each of
its 15 elements. Once you’ve assigned numbers to the array, you
might want to access the 7th number in the list, for example; if so,
you'’ll need a convenient way to tell the computer exactly which

112 Your Timex Sinclair 1000 and ZX81

element you’re interested in.

The system for identifying the elements of an array is very
simple. You write the array name, then, in parentheses, the num-
ber of the element you want to identify. For example, the 7th ele-
ment of the array N is named:

N(@)
Likewise, the first 5 elements are:

N(1)
N(2)
N(3)
N(4)
N(5)

The number in parentheses is called the index into the array. You
can write statements like:

LETN(7) = 162
INPUT N(5)
PRINT N(2)

The first of these statements stores the number 162 as the 7th ele-
ment of the array N. The second statement will read a number
from the keyboard, which will be stored in the 5th element of N.
The third statement displays the current value of the 2nd element
of N on the screen.

You can also write a variable name between the parentheses
after the array name; for example:

N()

Then the choice of elements depends on the value of the index I. If
I equals 5, N(I) refers to the 5th element of N. Knowing this, you’ll
be able to use FOR loops in which the control variable of the loop is
also used as the index into the array. For example:

10 DIM N(15)
20FOR| = 1TO 15
30 INPUT N(I)

40 NEXT|

In this program, the control variable, I, is also the index into the

Take Five: Numbers on Your Computer 113

array N. With these simple lines, you can instruct the computer to
read fifteen numbers from the keyboard and to store them all un-
der the array name N. You can begin to see what a powerful set of
tools we have in arrays and FOR loops.

To see this power in action, type lines 10 to 40, above, into your
computer. Add the following three lines, which display all fifteen
values of N on the screen:

50 FORI = 1 TO 15
60 PRINT N(l)
70 NEXT |

Run the program. Enter any fifteen numbers into the computer;
when you’re done, they’ll all be displayed at once on the screen.
The important thing to remember is that all fifteen numbers are
stored in the computer’s memory, and can be accessed and used for
whatever purpose suits you. Any operation that must be performed
on a series of items can be incorporated into a FOR/NEXT loop.

Your computer also allows you to define string arrays, but the
method is slightly more complicated than for numerical arrays.
Again, we will look at a one-dimensional array. In the DIM state-
ment, after you have defined the dimension and its length, you
must add another number within the parentheses. This number
represents the length of each element of the string array, the num-
ber of characters it contains. The elements of a string array are all
of the same predefined length. Let’s look at an example.

Suppose you have a list of fifteen words you want to store in the
computer’s memory for use in a program. The longest word con-
tains eight characters. You can define a string array for this list as
follows:

10 DIM W$(15,8)

The name of the array is W$; it will hold 15 strings, each 8 charac-
ters long.

You can experiment with this array by typing in the following
short program:

10 DIM W$(15,8)
20FORI = 1TO 15
30 INPUT W$(1)

40 PRINT WS(l);

50 NEXT |

114 Your Timex Sinclatr 1000 and ZX81

Notice, first of all, that you can refer to elements in this string
array in the same way you used the numerical array. The 7th word
in the array W$ is called:

W$(7)
and the Ith word is:

W())

Now run the program, and watch what it does. First enter a
word that is exactly eight characters long:

COMPUTER

The word will be stored in W$(1) and, thanks to line 40, it will also
be displayed at the top of the screen. Now enter two words, to be
stored in W$(2) and W§(3), respectively; choose words that are less
than eight characters long:

BOOK
PEN

The first word will appear on the screen, directly after the word
COMPUTER. (Notice that line 40 ends in a semicolon, which
prevents a line feed.) The word PEN, however appears four spaces
after the word BOOK. You'll see the following line on the screen:

COMPUTERBOOK PEN

Why are there four spaces separating BOOK and PEN? Because
you defined the elements of the array W$ as having eight characters.
Since BOOK contains only four characters, the computer fills
W$(2) with spaces to give it the correct length of eight.

Now try entering a word that is longer than eight characters:

INTERESTING

You’ll see only the first eight characters, INTEREST, appear on
the screen. The whole word cannot fit into an element of W$, so the
last three characters are simply chopped off.

Now that you’ve had a brief introduction to both numerical
and string arrays, you’re ready to look at the bar graph program.
This program uses two different arrays—defined in two DIM

Take Five: Numbers on Your Computer ~ 115
statements—to store all the information for creating a bar graph.

THE BAR GRAPH PROGRAM

The listing of the bar graph program appears in Figures 4.4 to
4.7. When you’re typing a long program like this into your com-
puter, it’s a good idea to save it on cassette in stages. As soon as
you’ve typed about a fourth of the program, save it. Then continue
typing until you’ve finished about half the program. When you
perform the second save operation, you can record over the same
part of the cassette tape on which you saved the first part of the
program, since you don’t need the first version any more. Continue
saving in steps like this until you’ve typed and saved the entire
program. This process guards against accidental loss of your work.
The most you can lose at any point as you are typing is anything
you’ve entered since the previous save operation.

When you’ve entered the entire program, check through it
carefully to make sure you haven’t made any mistakes. Then run
the program.

PRINT AT L,Z;"TITLE?"
INPUT T%
@ PRINT AT L,Z; "HOW MANY I

N GOTO 40

GOS5UB S0
CLS

NEXT I

FAST

GOSUB 600

FOR I=U TO O

PRINT I;"., “;N$(ID);" ";A(ID)
NEXT I

sLou

Figure 4.4: The Bar Graph Program

116 Your Timex Sinclair 1000 and ZX81

This program produces a bar graph for any list of numbers up
to fifteen items long. Figure 4.8 shows an example of the end result
of the program. This particular bar graph compares grocery ex-
penses, item by item, for the month of December. If these were real
data from your own household, you would have an easy-to-read
graphic representation of your expenses for the month. (If you’re
scratching your head and wondering what you would do with a bar
graph of grocery expenses, stop worrying. This program can be
used for any set of data, involving any subject. At the beginning of
the program you supply the title of the bar graph. You also supply
the name of each category along with the numerical data.)

This program guides you through three distinct phases of activ-
ity in order to produce the bar graph: First, you must input all the
data—including title, item names, and numerical data. The pro-
gram supplies clear prompts to tell you exactly what kind of infor-
mation to enter at each point of the input phase. The second phase
is for the correction of any input errors. This phase begins with a
complete “echo,” in table form, of all the data you have entered

PRINT AT L-U,Z; "CORRECTION~

OR <N> ”

INPUT A$

IF A%<¢>"Y" THEN GOTO 280
210 PRINT AT L,Z;"WHICH ITEM M
UMBER? .

INPUT I

IF I>0 THEN GOTO 220

PRINT AT ;

GOSUB 700

GOSUB 700

500

14 ?

AT I+U,Z;
700
AT I+U,Z;I;". ";N$(D

LET TOT=Z
31@ FOR I=U

S/

Figure 4.5: The Bar Graph Program (cont.)

Take Five: Numbers on Your Computer ~ 117

into the computer. You can study this information at your leisure,
and you’ll have the opportunity to correct any errors that you find
in the input data. Finally, in the third phase, you’ll see the bar
graph produced from your data. Let’s examine each of these phases;
we’ll enter the grocery expense data in this sample run through the
program.

At the beginning of the program, as you’ve already seen on
your own screen, the program prompts you to enter the title of the
bar graph:

TITLE?

You may enter any title up to 32 characters long. Enter the title you
see at the top of the bar graph in Figure 4.8. Following this prompt
you will see a second question on the screen:

HOW MANY ITEMS?

You must enter the number of items there will be in your bar graph
(up to 15 items). In the grocery expense graph there are 15 items,

IF A(I) >BIG THEM LET BIG=A(

LET_TOT=TOT+A(I)
NEXT I
LET AVE=TOT/0
LET FAC=L/BIG

CLS

GOSUB 600

FOR I=U TO @

PRINT N&$(I);">",;

FOR J=U TO INT (A(I) *FRC+.5S

PRINT ¥,
NEXT J

- ERAEINE ; TOT ; *
OL(,RUE*100+ .5) /7100

480 STOP
500 PRINT AT L-U,Z;"ITEM ";I;

Ss/0

Figure 4.6: The Bar Graph Program (cont.)

118 Your Timex Sinclair 1000 and ZX81

so you should type the number 15 and then press ENTER.

Next, the program will ask you to enter the name, and the
numerical amount for each of the 15 items of your graph. The
prompt for the first item’s name will look like this:

ITEM1 = > NAME:

You should enter the word MEAT, the first grocery item. As soon
as you’ve done so, the prompt will change to:

ITEM 1 = > NAME: MEAT
AMOUNT:

Now you must enter the amount spent on meat for the month.
Enter the number 27.53.

The program will continue to ask you for the name and amount
of each item until you have entered all 15 items. Figure 4.9 shows
the items you should enter after MEAT. (Notice that the word
“vegetables” has been abbreviated to 8 characters, the maximum
string length for the data items in this program.)

PRINT

INPUT

PRINT

PRINT

INPUT

PRINT

RETURN

PRINT TRB ((32-LEN T$)/2);

PRINT
RETURN
PRINT

RETURN

Figure 4.7: The Bar Graph Program (cont.)

Take Five: Numbers on Your Computer ~ 119

When you have entered the last item, the screen will go blank
for a2 moment. Then all the information shown in Figure 4.9 will
appear on the screen. This is the “echo” of all the input data that
you supplied to the program. At the bottom of the screen, just after
the table of data, appears the question:

CORRECTION? <Y> OR <N>

This is your chance to examine the data for any typing errors that
you might have made during the input phase. If you find an error,
you need only type Y (for “yes”) to indicate that you have a correc-
tion to make.

In response, the program will ask:

WHICH ITEM NUMBER?

At this point you must type the number of the item that you wish to
change. To see how the correction process works, let’s change the
amount shown for item #9, FRUIT. Enter the number 9. The
program will then prompt you to enter the name and number of

-- DECEMBER

SUNDRIES >
TN 195 . 95 ENEREHER13. 07

97480

Figure 4.8: Sample Run of the Bar Graph Program: Grocery Expenses

120 Your Timex Sinclair 1000 and ZX81

the item. (You must enter both pieces of information, even if you
only want to change one of them.) Enter FRUIT for the name, and
the new value 7.15 for the amount. The correction will be made on
the table display, so you can see the results of your correction im-
mediately. You can make as many corrections as you want; the
correction phase continues until you enter the letter N (for “no”’) in
response to the correction prompt.

As soon as you leave the correction phase of the program, the
screen will go blank for a few moments, and then the bar graph will
appear on the screen. Take another look at Figure 4.8, the bar
graph for the grocery expense data. Notice that, in addition to the
graph, the program gives you the total amount spent for the month,
and the average expense per item.

Figure 4.10 shows a second bar graph example. This time the
title is “Office Supplies—Expenses, 1982” and the bars represent
monthly expenses for office supplies, from January to December.
The total expense for the year is shown as $7,439.86, and the aver-
age monthly expense as $619.99.

GROCERY EXPENSES -- DECEMBER

MEAT
VEGETBLS

1
2
3
4
S
6
?
8
9
1
1
1
1
1

EWNFPE* 5 s 250 08 s

ey
[0}

SUNDRIES 25.1S5

CORRECTION? «¢Y> OR <N>

nu

Figure 4.9: The Grocery Data

Take Five: Numbers on Your Computer ~ 121

In the next section of this chapter we’ll examine the structure of

~ this program. Before you read on, you might want to run the pro-

gram again, entering some real data of your own (from your home,

business or school life) and produce a bar graph that has meaning
to you.

INSIDE THE BAR GRAPH PROGRAM

Once again, as you read through this description, you can either
refer back to Figures 4.4 through 4.7, where the listing is pre-
sented; or you can list the program, section by section, on your own
screen. '

This program comes closer than others we’ve discussed to filling
up the memory available in your computer (2K only; not the extra
memory module). For this reason, three variables are defined at
the beginning of the program that act as “constants” throughout
the program; as we saw in Chapter 3, this is a method of saving

OFFICE SUPPLIES--EXPENSES, 1982

DECEMBER »*
UNENS7439.86 ENESER

Figure 4. 10: Second Bar Graph Example: Office Supplies

122 Your Timex Sinclair 1000 and ZX81

memory space by replacing literal numeric values with single-
letter variable names:

1LETU =1
2LETZ =0
3LETL =21

The variable L is used as an address for placing prompts on the
screen.

As another way of conserving memory, no REM lines have
been placed in the program. This is unfortunate in such a long
program; but it is a choice you will sometimes have to make. To
compensate for the lack of comments in the listing, here is a section-
by-section outline of the program:

¢ Initialization section (lines 1 to 70).

This section defines the three “constant” variables; reads the
title and the number of items from the keyboard; and dimensions
two arrays, N$ and A, to store the bar graph data.

® Input section (lines 75 to 110).

"This section controls the input of all the bar graph data. It calls
the subroutine at line 500 once for each item. The subroutine at
line 500 in turn displays the prompts on the screen and reads input
from the keyboard.

® Echo section (lines 120 to 170).

This section “echoes” all the input data on the screen in one
complete table. It calls the subroutine at line 600 to display the title
at the top of the screen.

® Correction section (lines 180 to 270).

This section controls the correction dialogue. Whenever you
correct an item, this section stores the new data in the appropriate
elements of N§ and A, and displays the new data on the screen.
The correction section calls two subroutines: the subroutine at 500,
which supplies the input prompts and reads data from the key-
board; and the subroutine at line 700, which clears a single line of
the screen so that new information can be displayed there.

Take Five: Numbers on Your Computer ~ 123

® Intermediate calculations section (lines 280 to 360).

This section calculates four values from the numerical data
stored in the array A. BIG is the largest value in the array. TOT is
the sum of all the values in the array. AVE is the average of the
values in the array. The value FAC is a conversion factor that will
be used to make each bar of the graph proportional in length to the
number it represents.

® The bar graph section (lines 370 to 480).

This section begins with a call to the subroutine at line 600,
which displays the title of the bar graph. Then it draws each bar,
calculating the appropriate length using the value of the conversion
factor FAC. Finally, this section displays the total and average
values of the data.

® The subroutines

— at line 500: the input subroutine;
— at line 600: the title subroutine;
— at line 700: the clear-line subroutine.

Using the outline above as a guide, you should be able to read
through the entire program, and understand the meaning and
purpose of most of the lines. A few of the lines may still need some
explanation, however. The following notes will clarify several of
the program’s more difficult lines:

Lines 60 and 70 contain the DIM statements. Line 60 defines
the string array, N§, to store the names of the bar graph items, and
line 70 defines the numerical array, A, for the amount of each item:

60 DIM N$(Q,8)
70 DIMA(Q)

The length of each of these arrays is specified by the variable Q.
During the program run, you input a value for this variable in
answer to the question, “HOW MANY ITEMS?”:

30 PRINT AT L, Z; “HOW MANY ITEMS?“
40 INPUTQ

If, for example, you input the number 12 for the quantity of
items in the bar graph, then the length of each array will be set at
12, as though lines 60 and 70 were written as follows:

124 Your Timex Sinclair 1000 and ZX81

60 DIM N$(12,8)
70 DIMA(12)

Through use of the variable Q, then, you know that the memory
space reserved for the two arrays will be exactly the amount needed,
no more and no less.

These two arrays are assigned values in the FOR loop located
at lines 80 to 110:

80FORI =UTOQ
90 GOSUB 500
100 CLS
110 NEXT I

The FOR line varies the control variable, I, from 1 to the value of
Q. The subroutine at line 500 uses this control variable to specify
the correct item number in the message it displays on the screen:

500 PRINT AT L-U,Z; “ITEM “;I;

and also to store each item of input data in the correct element of
the appropriate array:

520 INPUT N$(I)

550 INPUT A(l)

These input lines, and the prompt lines that precede them, are
isolated in their own subroutine because they are needed at two
different times in the program: first in the initial input section; then
in the correction section.

Another FOR loop, in lines 140 to 160, displays all the infor-
mation from both arrays on the screen:

140FORI =UTOQ
150 PRINT I; “. “; N$(1); “ “; A(l)
160 NEXT |

Line 150 uses the control variable I three times: first to display the
item number, then to access the correct element of N§, for the
name of the item; and finally to display the amount of the item,
from the array A.

Lines 310 to 340 determine the largest value in the array A

Take Five: Numbers on Your Computer 125

(BIG), and the sum of all the values (TOT). The two variables
used for these two calculations are first initialized to zero:

290LETBIG = Z
300LETTOT = Z

Then another FOR loop moves through the entire array from 1 to
Q:

310FORI = UTOQ

320 IF A(l)> BIG THEN LET BIG = A(l)
330 LET TOT = TOT + A())

340 NEXT |

Line 320 compares each value of the array to the current value of
BIG. Each time it finds a value larger than BIG, that value becomes
the new BIG. Line 330 accumulates a running total of all the values.

"The average value is the total divided by the number of values, Q:

350 LETAVE = TOT/Q

"The proportional conversion factor is based on the largest value in
the array, BIG:

360 LETFAC = L/BIG

The variable L, you’ll recall, is a “constant” value, equal to 21.
Thus, the longest bar in the graph will be 21 characters long. As
we’ll soon see, multiplying each value in the array A by the conver-
sion factor FAC will result in a number between zero and 21; this
number, in turn, will determine the length of the corresponding
bar in the graph.

The bar graph itself is displayed on the screen by lines 390 to
450. These lines are worth careful examination. They show you an
example of a FOR loop within another FOR loop. We sometimes
call this a nested loop; there are two essential rules that you must be
aware of for the design of nested loops:

1. The inner loop must use a different control variable than the
outer loop.

2. The FOR and NEXT statements of the inner loop must both
be located inside the outer loop.

Keep these rules in mind as you examine the lines that create the

126 Your Timex Sinclair 1000 and ZX81

bar graph.
The outer loop, which begins at line 390, controls the item
number, incrementing the control variable I from 1 to Q:

390FORI =UTOQ
First, the name of the item is displayed:
400 PRINT N$(I); “> “;

Then the inner loop creates a bar of correct proportional length to
the amount, A(I):

410 FORJ = UTO INT (A(l) » FAC + .5)

The expression A(I) * FAC will result, as we have seen, in a num-
ber between 0 and 21. By adding .5 and taking the integral value of
the result, we can round this number off to the nearest integer:

INT (A(l) » FAC + .5)

In this way the inner loop increments its control variable, J, from 1
to the appropriate length of the bar that is to represent the value
A(]). Each time J is incremented, line 42 increases the length of the
bar by one character. (The graphics character that is the “building
block” of the bars appears on the [S] key of your keyboard.)

To summarize, you can see that for each repetition of the outer
loop, the inner loop goes to work creating one bar of the bar graph.
These are probably the most important lines for you to understand
in this program. If you’re having trouble seeing how they work,
perhaps the following analogy will help you grasp the concept ofa
nested loop.

Think of the action of the three hands on a clock. If you define
one time around the clock as a “loop,” you can see three levels of
loops on the clock. The innermost loop is the second hand, which
repeats its action 60 times for every complete loop of the minute
hand. The minute hand, in turn, goes around the clock 12 times for
every loop of the hour hand. Thus, there are three levels of repeti-
tion; the innermost loop sees the most activity, and the outermost
loop controls all the activity of the other two loops. The action of the
nested loops in our program is similar: The outer loop at line 390
controls the activity of the inner loop at line 410.

Take Five: Numbers on Your Computer ~ 127

SUMMARY

Your computer offers you five arithmetic operations (+, -, =%,
/, **) and a useful assortment of mathematical functions. You can
combine these operations and functions in complex expressions in
order to perform calculations. In writing such expressions, you
must always be aware of the computer’s established order of opera-
tions. To override this order—or simply to clarify an expression
and make it more readable—you can include parentheses in arith-
metic expressions.

The computer’s fast mode can be useful when you want the
computer to concentrate on performing rapid calculations, as we
saw in the super-calculator program.

The array is an important data structure in BASIC that allows
you to store many values under one variable name. The array is an
ideal tool to use within FOR loops; the control variable of a FOR
loop can be used as an index into the array.

The bar graph program presented in this chapter shows a good
example of the power of nested FOR loops, as well as several exam-
ples of the efficient use of arrays within FOR loops.

Chapter 5

Words, Words, Words:
Strings and String
Functions on Your
Computer

INTRODUCTION

In this final chapter we’ll take a closer look at strings and the
functions and operations you can perform on them. As you know,
a string is a data item that consists of one or more characters.
You’ve already had considerable experience with strings and
string variables in the programs presented in earlier chapters; but
there are still several important functions that you should learn
about.

We’ll begin this chapter with a look at the character code used
by the T/S 1000. You’ll see how to use the functions CODE and
CHRS$ to convert back and forth between the code numbers and
the characters they represent. You’ll examine and run a couple of
short programs along the way; you’ll also learn the meaning of
concatenation, and experiment with the useful LEN function.

Next, in preparation for the last program in this book, you’ll
find out what happens when you “slice” a string and why you
might want to do so. The last program, called the decision-maker
program, is an amusing item that turns the computer into your
own private counselor and adviser. Any way you slice it, this pro-
gram wouldn’t think of stringing you along.

130 Your Timex Sinclair 1000 and ZX81

THE T/S 1000 CHARACTER CODE

‘The computer uses its own private code to store—and distin-
guish among—the characters on your keyboard. In some program-
ming situations, it can be useful for you to know about this code.

In the code, each character is assigned a number between 0 and
255. In this context, the computer considers every item on your
keyboard a character—even the keywords, functions, and other
words that appear on the keyboard. Figures 5.1 to 5.3 show you the
code. There is certainly no reason for you to memorize any part of
this code; but you should take 2 moment to become familiar with it
and take note of the general location of the several categories of
characters. For example, you can see that the graphics characters
are located in two separate parts of the code (1 to 10, and 128 to
138); the digits and letters are located near the beginning of the
code (28 to 63); and the reverse-video characters appear in about
the middle of the code (139 to 191). You can also find all the

";;m— 1.

TMMOOBDOVONRAPLPORNEG ~ ~ N\ x|
N<<XECCHOIDVOZIr XL HI®

*HAvVad @0

1
2
3
4
S
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2

@ PO0ONONRONE

Figure 5.1: The Character Code

Strings and String Functions on Your Computer 131

keywords, functions, operators, and other symbols in the code.

You may notice that a large section of the code is missing (from
67 to 127). Most of these missing code numbers are simply unused,;
a few of them are used for “control keys,” such as the direction key
and the DELETE key, which do not display characters on the
screen.

The CHR$ function supplies the character represented by a
code number. The number must, of course, be between 0 and 255;
CHRS$ returns the corresponding character, keyword, function, or
symbol.

The following six-line program reads a code number from the
keyboard and then displays the character on the screen for you:

10 PRINT AT 21,0; “WHAT CODE NUMBER?“
20INPUTC

30IF C > 255 THEN GOTO 20

40CLS

XM

1
i

A EALS]

§
!
4
:
2
H
E
2
[
E

Figure 5.2: The Character Code (cont.)

132 Your Timex Sinclasr 1000 and ZX81

50 PRINT AT 8,8; “CODE “;C; “=“;CHR$ C
60 GOTO 10

Line 30 tests the number you type to make sure it is a valid code
number. Line 50 uses the CHR $ function to display the character.

The CODE function, conversely, supplies the code number of
a character. You might recall CODE and CHR$ from Chapter 2;
the very first program you typed into the computer used both func-
tions to change a string of letters into its reverse-video equivalent.

The program shown in Figure 5.4 converts strings into reverse
video. The program is merely an exercise; it doesn’t really do any-
thing useful. But you can learn several interesting techniques
for dealing with strings if you take the time to study the program
carefully.

Some sample output from this program appears in Figure 5.5.
As you can see, the program prompts you repeatedly to enter a
string of characters into the computer. After each string input, the
program displays the string in reverse-video. The process of creating

246
LPRINT247
LLIST 248

STOP 249
SLOW 2s5¢
FAST 251
NEUW 252
SCROLL253

254

Figure 5.3: The Character Code (cont.)

Strings and String Functions on Your Computer 133

a reverse-video string, performed by lines 50 to 80, is what is inter-
esting about this program.

The string variable W$ contains your input word. The variable
R$ will hold the reverse-video of the word. In line 50, R$ is initial-
ized as a null string, that is, a string that has no characters in it.

S50LETR$ = ““

Then the FOR loop in lines 60 to 80 finds the reverse-video equiva-
lent of each character of W$, and adds the characters on to the end
of R§. The FOR statement (line 60) uses the LEN function to
determine the length, in characters, of the input string, W$. As you
can see, the control variable, I, is incremented from 1 to LEN W§:

60 FOR| = 1 TOLEN W$

This is how the loop deals with each character of W$, one character
at a time. BASIC will allow you to access one character of a string by
putting a number representing the position of the character, in

PRINT “"TYPE A UORD:
INPUT Ug

PRINT U$

PRINT "“REVERSE UIDEOD: *;
LET R‘_-_ll!l ’
FOR I=1 TO LEN U$

LET R$=R$+CHR$ (CODE us$(I) +

NEXT I

Figure 5.4: The Reverse Video Program

134 Your Timex Sinclair 1000 and ZX81

parentheses, after the string variable name. Thus, W$(I) repre-
sents the character of W$ located at position I.

For example, if you type a three-character string into the com-
puter, the FOR loop will increment I from 1 to 3. The three charac-
ters of the string are W$(1), W$(2), and W§(3).

Now let’s look at the expression, in line 70, that converts a
character to its reverse-video equivalent:

CHRS$(CODE W$()) + 128)

Inside the parentheses, the CODE function supplies the code num-
ber of the character W§(I). Look once again at the character code
in Figures 5.1 to 5.3. If your input string consists of punctuation
marks, digits, or letters, the code number for each character of the
string will fall somewhere between 11 and 63. If you add 128 to any
of these code numbers, you’ll see that the resulting code will repre-
sent the reverse-video equivalent of the character. Try an example.
The character code for the letter D is 41. Adding 128 to 41 gives
169; sure enough, the reverse-video D character has the code 169.

So now you can see exactly what the conversion expression in
line 70 does. It begins by adding 128 to the code number of the
character in question:

(CODE W$(l) + 128)

and then uses the CHRS$ function to find the character represented
by the new code:

CHR$ (CODE W$(l) + 128)

When the new character is determined, it is added onto the
reverse-video string that is accumulating in the variable R$. Com-
bining two strings in this fashion is called concatenation. The process
is indicated by the plus symbol (+), as in line 70:

70LETR$ = R$ + CHR$(CODE W$(l) + 128)
This LET statement says, “Add the new character onto the end of

the current string value stored in R$; then store the new string,
which is one character longer than before, in R$ again.”

Strings and String Functions on Your Computer ~ 135

The reverse-video conversion is complete when I equals LEN
W$; the action of the FOR loop is over, and line 90 displays R$ on
the screen:

90 PRINT R$

To summarize, lines 50 to 80 of this program can teach you
several important points about strings and string handling:

® You can initialize a string variable as a null string, meaning a
string that contains no characters (line 50).

® The function LEN supplies the length, in characters, of a
string (line 60).

® You can access a single character of a string by specifying the
position of the character, in parentheses (line 70).

® The codes of the reverse-video characters are all numbered
higher by 128 than the codes of the regular characters (line
70).

YPE A UORD:

JOEL

REVERSE VUIDEO:

TYPE A UWORD:

REVERSE VUIDEO:

TYPE A WORD

REVERSE UIDEO:

TYPE A _UWORD

REVERSE UIDEO:

TYPE A UWORD:
REVERSE VIDEO

TYPE A WOR

REVERSE UIDEO:

TYPE A UORD:

o--.

Figure 5.5: Sample Output from the Reverse Video Program

§12§I456.78
:i?/*<>!
RE*ERSE UIDEQ
YOUR T/§ 180@

AN X

136 Your Timex Sinclair 1000 and ZX81

® You can concatenate two strings (i.e., combine them), using
the “ +”” symbol (line 70).

In the next section you’ll see that your computer also provides a
way to access several consecutive characters of a string, in a process
called slicing.

SLICING A STRING

It’s often convenient to be able to identify a substring of a larger
string, for any of several reasons. You might want to examine a
string to see if it contains a certain sequence of characters, or you
might want to change the values of certain positions inside a string.
In the decision-maker program, at the end of this chapter, we’ll
simply want to access relatively small portions of a long string, in
order to display them. The slicing technique allows you to do all of
these things simply and efficiently.

We’ll experiment with slicing in a series of immediate com-
mands. Make sure you type each command into your own com-
puter so you can actually see what slicing does.

Begin by defining the string W$, as follows:

LETW$ = “FUNDAMENTAL*
Now enter the command:
PRINT W$

to assure yourself that the word FUNDAMENTAL is actually
stored in memory under the variable name W§.

The syntax for slicing uses the word TO, in parentheses, after
the name of the string variable. In general, the expression:

S$(MTON)

identifies the portion of string S$ located in positions M to N. M
and N can be literal numbers, numeric variables, or numeric ex-
pressions. We sometimes refer to the sliced portion of the string as a
substring.

As a first try at slicing, type this command:

PRINT W$ (5 TO 8)

Before you press the ENTER key, try to predict what the result of
the command will be, by counting out the positions in the word

Strings and String Functions on Your Computer ~ 137

FUNDAMENTAL. The command should display the word
AMEN at the top of the screen.

You can omit the first or last position number in the TO clause.
If you omit the first, the slice will begin with the first character of
the string:

PRINT W$ (TO 3)

This command gives the word FUN. If you omit the last number,
the slice extends to the end of the string. For example:

PRINT W$ (6 TO)

When you enter this command you should see the word MENTAL
on the screen.

You can also revise a slice of a string. To do so, you must specify
the slice that you wish to revise in a LET statement, as follows:

LET W$ (TO 5) = “INCRE”
Type this command, and then enter:

PRINT W$

to see what has happened to your string. You should see the word
INCREMENTAL. The first five characters of the string have
been replaced by new characters.

The decision-maker program uses the slicing technique to
choose a response—from a long string of responses—in answer to a
question that you will ask it. The disillusioning secret of that pro-
gram is this: The responses are chosen completely at random. Be-
fore we examine the program, then, we must take a quick look at
random numbers on your computer.

RANDOM NUMBERS

The function RND, located below the [T] key, returns a random
number between 0 and 1; it returns a different number each time you
use it. To see RND in action, run the following two-line program:

10 PRINT RND
20GOTO 10

A column of random numbers will appear on the screen; the
program will continue until there is no room left in the column.

138 Your Timex Sinclair 1000 and ZX81

Random numbers are, in principle, numbers chosen in a com-
pletely unpredictable manner. In fact, your computer uses a math-
ematical formula to compute the numbers supplied by RND. This
means that the numbers are not truly random; however, the for-
mula is designed to supply numbers that will always seem random.
For the programs that you’ll write on your computer, this apparent
randomness will probably always be good enough.

On small personal computers such as the T/S 1000, the most
common use of the random function is probably to simulate random
events in games programs. For example, you can use RND to
simulate a roll of dice, or a hand of randomly dealt playing cards.

To create these simulations, we need some way of converting
the range of the random numbers generated by RND. Random num-
bers between 0 and 1 may not be very useful; but if we can convert
them to random integers between 1 and 6, for example, then we
can use the numbers in certain kinds of games.

The formula for making such a conversion is relatively simple.
If you have a random number greater than 0 and less than 1, and
you multiply that number by 6, you will then have a random num-
ber between 0 and 6:

RND » 6

If you truncate this number to an integer (using the INT function)
you will be left with a random integer from 0 to 5:

INT (RND + 6)

Finally, adding 1 to the result, you produce a random integer from
1to6:

INT (RND = 6) + 1

To see this formula in action, enter and run the short program
shown in Figure 5.6. This program creates a very elementary
guessing game. The computer begins by displaying the followmg
message on the screen:

| AM THINKING OF A NUMBER
FROM 1 TO 6. CAN YOU GUESS IT?

You enter a guess in the form of an integer from 1 to 6. Then the
computer tells you if your guess was right or wrong. For example,

Strings and String Functions on Your Computer 139

if you guess 4, you’ll either see a message such as:

RIGHT. THE NUMBER WAS 4,
or:

SORRY. THE NUMBER WAS 3.

While this is a very simple game, it shows you how RND can be
used to produce unpredictable results from the computer. Notice
that line 5 in the program produces the random number, using the
formula we developed above:

5LETR = INT(RND « 6) + 1

You’ll see a similar formula in the decision-maker program.

THE DECISION MAKER

You can use the decision-maker program as a parlor game, to
amuse your friends with the computer’s wonderful ability to predict

15 SELLAIT_gmr a3
(1) n
G OF A NUMBER" : M THINKIN
20 _PRINT “FROM 1 TO 6. cAN vou

S
5@ IF R=G THEN PRINT A A
IGHT" T 8.3;"R

60 IF R<>G THEN PRIN
SORRY" ; T AT 8,3;
"« THE NUMBER WAS ;R

80 PRINT AT 21, ©;“PRESS EIED
FOR ANOTHER ROUND.® =
98 INPUT AS$
100 CLS
116 GOTO S

Figure 5.6: The Guessing Game Program

140 Your Timex Sinclair 1000 and ZX81

the future, solve personal dilemmas, or make fast business deci-
sions. To operate the program, you type any yes-or-no question
onto the keyboard; the computer will pause briefly to consider, and
then will display its “careful” answer on the screen.

Of course, the dark secret you now share with your computer is
that the answers are chosen randomly, and have no relation at all to
the nature of the questions. But let’s keep it a secret.

Figure 5.7 shows a sample screen from this program. After you
have entered a question, the computer echoes the question at the
top of the screen, and displays its answer inside the decision box.
Then the computer waits for your next question; it can go on an-
swering questions all day, if you like.

The program listing appears in Figure 5.8. We’ll discuss the
three important techniques illustrated in this program: the use of
RND to make a random choice among several responses; the use
of slicing to access the correct response; and finally, the use of the
LEN function to center a string horizontally on the screen.

Begin by studying line 10 carefully. It defines the “answer

DO I NEED A COMPUTER~

DEFINITELY

DECISION MAKER

Figure 5.7: Sample Screen from the Decision Maker

Strings and String Functions on Your Computer ~ 141

string,” A$. The string is exactly 60 characters long, and is made
up of six 10-character sections, representing the six different an-
swers that the computer can give to your questions:

YES

NO
PERHAPS
DEFINITELY
WHY NOT?
ASK AGAIN.

Since these answers are of varying lengths, they are surrounded by
spaces in the string, which fill them out to a length of 10 characters.
Thus, the first answer begins at A§(1) and goes to A$(10); the
second goes from A$(11) to A$(20); the third from A$(21) to A$(30);
and so on. We’ll see that this regularity is the key to choosing an-
swers from the string.

Line 20 displays the title of the program. Lines 30 to 100 draw
the “decision box” on the screen, using two FOR loops and four

12 LET As$=" YES NO
PERHAPS DEFINITELY UWHY NOT? A
SK AGAIN.

PRINT AT 13,9; - EESENGINER

FOR _Y=21 TO 31
17.,Y

THEN GOTO 150
PRINT AT 2,0;"

:RINT AT 2,INT ((32-LEN O%)
150 LET R=10%INT (RND#*6) +1
160 PRINT AT 8,11;A%(R TO R+9)
170 GOTO 110

[H

Figure 5.8: The Decision Maker Program

142 Your Timex Sinclair 1000 and ZX81

PLOT statements.
Line 110 reads your question from the keyboard and assigns it
to the string variable Q$:

110INPUT Q8

Lines 150 and 160 choose the answer. Line 150 uses RND in a
formula tailored specifically for the convenience of the slicing
process:

150LETR = 10 « INT(RND « 6) + 1

We have seen that the expression INT (RND # 6) produces a ran-
dom integer from 0 to 5. Multiplying this result by 10 gives us a
random multiple of 10, from 0 to 50. When we add 1, we will have
one of the following six numbers:

1 11 21 31 41 51

These numbers, as we have seen, represent the respective starting
points of the six different answers contained in the string A$. Thus,
line 150 chooses one of these starting points, at random, and assigns
its value to the variable R.

Once this starting point is determined, accessing the answer is a
simple slicing procedure. It is performed in line 160:

160 PRINT AT 8,11; AS(RTOR + 9)

This line chooses the 10-character substring of A$ from position R
to position R + 9; it then displays this substring on the screen,
inside the decision box. So, thanks to the variable R, line 160 dis-
plays a randomly chosen answer on the screen. Line 170 then be-
gins another round by sending control of the program back up to
the INPUT statement:

170 GOTO 110

One more line in this program merits some discussion. Line
140, which displays your question at the top of the screen, contains
an interesting formula for centering the string Q$ horizontally:

140 PRINT AT 2, INT ((32 - LEN Q$)/ 2); Q$

(If you were very observant, you might have noticed a similar for-
mula in the bar graph program of Chapter 4.) The AT clause of this

Strings and String Functions on Your Computer 143

PRINT statement puts the string on row 2; the column position is
calculated in a formula based on the length of the string:

INT ((32 - LENQ$)/ 2)

This formula assumes that the question string, Q$, is not more
than 32 characters long. The LEN function supplies the number of
characters in Q$. Since the screen is 32 columns wide, the expression
(32 - LEN Q$)/ 2 gives the address of the column where the string
must begin in order to be centered horizontally. For example, let’s
say you enter a question string 20 characters long; to center the
string, you would want 6 spaces on both sides of the question. You
can see that the formula (32 - 20)/ 2 gives you the correct starting

point.
SUMMARY

Your computer codes each keyboard character as a number
between 0 and 255. For most programming situations you can
ignore this code; the computer uses the code quite privately, and
you need not even be aware that the code exists. But for the occa-
sions when the code can be useful to you, the functions CODE and
CHRS$ will help you convert between characters and code numbers.

Concatenation means combining strings to create a new string.
Slicing is the process of extracting or identifying a substring. We’ve
seen examples of both of these processes in the programs of this
chapter.

At this point, you should be on good terms with your computer,
its operations and its computing capabilities. You are ready to run
any of the programs commercially available for your computer, or
to write your own. You have a working knowledge of BASIC, a
powerful and versatile programming language. In short, you are
no longer merely a computer owner, you are a computer user.

Appendix A

The BASIC Vocabulary

This appendix defines the words that appear on the T/S 1000
keyboard, and, in many cases, gives examples of BASIC state-
ments that include the words. The keyboard location of each word
is specified, along with the word’s category (keyword, function, or
shift).

ABS (function; [G] key). Supplies the absolute value of a number.

AND (shift; [2] key). Creates compound true-or-false statements
for IF decisions. For example:

IF1 > 0ANDI < 100 THEN GOSUB 300

In this example, the GOSUB statement after THEN will
only be performed if both the statementsI > 0 and 1 <100
are true.

ARCCOS (function; [S] key). Returns the arccosine of a number
between —1 and 1. Result is in radians. (1 radian = 57.3
degrees.) ARCCOS is displayed as ACS on the screen.

ARCSIN (function; [A] key). Returns the arcsine of a number
between —1 and 1. Result is in radians. ARCSIN is dis-
played as ASN on the screen.

ARCTAN (function; [D] key). Returns the arctangent, in radians.
ARCTAN is displayed as ATN on the screen.

AT (function; [C] key). Used with the PRINT statement to specify
a screen display position for a character, string, or digit. AT
must be followed by an address in the form, row, column,
where row is a number from 0 to 21, and column is a number
from 0 to 31. For example, the statement:

PRINT AT 8,10; “HELLO*

146 Your Timex Sinclair 1000 and ZX81

displays the word HELLO in row 8, starting at column 10.
(Address 0,0 represents the upper-left corner of the screen.)

BREAK ([SPACE] key). Interrupts a program run in progress.
BREAK cannot be used while the computer is waiting for
input from the keyboard.

CHRS$ (function; [U] key). Supplies the character corresponding
to a code number between 0 and 255. Keywords, functions,
characters, and symbols are all included in the computer’s
character code.

CLEAR (keyword; [X] key). Clears all variables and their values
from memory; does not clear program lines.

CLS (keyword; [V] key). The “clearscreen” command clears the
screen of all information; a subsequent PRINT statement
will display information starting at the upper-left corner of
the screen (position 0,0).

CODE (function; [I] key). Supplies the computer’s code number
for a given character. Code numbers range from 0 to 255.

CONT (keyword; [C] key). Continues a program run that has
been interrupted for any reason.

COPY (keyword; [Z] key). Sends the entire current contents of the
screen display to the printer.

COS (function; [W] key). Supplies the cosine of a number that
represents an angle. The COS function assumes that the
angle is expressed in radians. (1 degree = .0175 radian.)

DELETE (shift; [0] key). Deletes the character, keyword, or func-
tion to the immediate left of the cue. DELETE can be used
whenever a new line is being entered into the computer, or
when a completed line is being edited.

DIM (keyword; [D] key). Defines the name, type, dimensions and
length of an array. For example:

DIM N(10)

defines N, a one-dimensonal numeric array of length 10. In
the case of string arrays, all the string elements must be of the

Appendix A: The BASIC Vocabulary 147

same length; the length must be specified in the DIM state-
ment. For example:

DIM A$(10,5)

defines A$, a one-dimensional string array. A$ can contain
up to 10 strings, each consisting of 5 characters.

EDIT (shift; [1] key). Displays a copy of the current line at the bot-
tom of the screen, ready for editing. The current line is
marked with a small reverse-video “ > character in the
program listing.

ENTER Enters program lines or input information into the com-
puter’s memory.

EXP (function; [X] key). Supplies the “natural exponent” of a
number. (Calculates an exponent of e, where e =
2.7182818.)

FAST (shift; [F] key). Puts the computer in the fast calculation
mode.

FOR (keyword; [F] key). Creates a repetition loop, causing the
lines within the loop to be repeated a specified number of
times. (The end of the loop is marked by a NEXT state-
ment.) For example:

FORI| =2TO20STEP 2

The control variable is I in this FOR statement. During the
repetition of the loop, I will be incremented in value from 2
to 20, in steps of 2.

FUNCTION (shift; [ENTER] key). Puts the keyboard into the
function mode; the next keystroke will register as a function
key.

GOSUB (keyword; [H] key). Sends control of the program to a
subroutine. The first line of the subroutine can be expressed
as a literal number:

GOSUB 300
or as a numeric variable:

GOSUBT

148 Your Timex Sinclair 1000 and ZX81

or even as a numeric expression, for a “calculated” GO-
SUB:

GOSUB 100 = (VAL I$ + 4)

GOTO (keyword; [G] key). Sends control of the program to a
specified line. The line number can be expressed as a literal
numeric value, a numeric variable, or a numeric expression.

(See GOSUB for examples.)

GRAPHICS (shift; [9] key). Puts the keyboard into the graphics
mode; subsequent keystrokes will register as graphics char-
acters or reverse-video characters. The GRAPHICS key
must also be used to shift the keyboard out of the graphics
mode back into the letter mode.

IF (keyword; [U] key). Introduces a decision statement. An IF
statement begins with a true-or-false statement, followed by
a THEN clause; for example:

IFD <>0THENLETQ = 1/D

With this statement, the computer first evaluates D
<> 0 to true or false. If the statement is true, the LET
statement (after THEN) is performed; if it is false, control of
the program proceeds to the following line.

INKEYS$ (function; [B] key). For each INKEY$ performance, the
computer scans the entire keyboard once to see if a key is
being pressed. If so, INKEY$ supplies the letter-mode value
of the key; if not, INKEY$ returns a null string (“”).

INPUT (keyword; [I] key). Instructs the computer to read data
from the keyboard and to store the data in a specified vari-
able. For example:

INPUT S$

reads a string input from the keyboard, and stores the value
in the variable S$. INPUT causes the input data to be
echoed on the screen as it is entered.

INT (function; [R] key). Supplies the integral value of a number.

LEN (function; [K] key). Supplies the length, in characters, of a
string.

Appendix A-The BASIC Vocabulary ~ 149

LET (keyword; [L] key). Assigns a value to a variable. The varia-
ble can be either a new one, receiving its first value, or an old
one, receiving a new value. At the left side of the equal sign,
the LET statement must contain a single variable name; the
right side may contain literals, variables, or expressions. For
example:

LETV =5
LETA=8B
LETX = (5 + Y)/2

Any variables named on the right side of the equal sign must
be defined before the execution of the LET statement. The
LET statement does not change the values of variables on
the right side of the equal sign.

LIST (keyword; [K] key). Displays the current program on the
screen. If LIST is followed by a line number, as in:
LIST 100

the program listing begins at that line.
LLIST (shift; [G] key). Sends the program listing to the printer.

LN (function; [Z] key). Supplies the natural logarithm (base €) of a
positive number.

LOAD (keyword; [J] key). Retrieves a program stored on cassette
tape. The LOAD command allows two forms: with the
name of the program:

LOAD “NAME*
or without the name:
LOAD ““

The quotation marks are required in both forms. In the lat-
ter case, the computer loads the first program it encounters
on the cassette tape.

LPRINT (shift; [S] key). Sends aline of information to the printer.

NEW (keyword; [A] key). Clears the current program out of the
computer’s memory.

NEXT (keyword; [N] key). Marks the end of a FOR loop. The
control variable, defined in the FOR statement, must follow

150 Your Timex Sinclair 1000 and ZX81

the word NEXT; for example:

NEXT |

NOT (function; [N] key). Modifies a true-or-false statement in an
IF decision; for example:

IFNOT D> 0 THEN GOTO 10
This statement is equivalent to:

IFD< =0 THEN GOTO 10

OR (shift; [W] key). Creates compound true-or-false statements
for IF decisions. In the following example, OR connects two
equalities:

IFX=50RY =3 THEN GOSUB 300

The GOSUB statement expressed after the word THEN
will be performed if either or both of the equalities are true.

PAUSE (keyword; [M] key). Instructs the computer to pause in
the execution of a program. The length of the pause is deter-
mined by an integer following the keyword PAUSE. For
example:

PAUSE 50

results in a pause of about one second; increasing the num-
ber by multiples of 50 will increase the pause by additional
seconds. If the number following PAUSE is greater than
32766, the command means “pause forever.” Any pause
can be interrupted, and the program resumed, by pressing
any key on the keyboard.

PEEK (function; [O] key). Returns the contents of a memory lo-
cation from 0 to 65535.

PLOT (keyword; [Q] key). Displays a “pixel” on the screen at a
specified address. The elements of the PLOT address are in
the reverse order of the elements of the PRINT AT address.
The general form of the PLOT command is:

PLOT h,v

where 4 is the horizontal address (from 0 to 63) and v is the
vertical address (from 0 to 43). The PLOT address 0,0 is
located at the lower-left corner of the screen.

Appendix A: The BASIC Vocabulary 151

POKE (keyword; [O] key). Writes a value to a specified memory
location from 0 to 65535. Takes the form:

POKE a,v

where a is the address of the memory location and v is the
value. The absolute value of » cannot exceed 255.

PRINT (keyword; [P] key). Sends a line of information to the
screen. A semicolon (;) separating PRINT elements displays
the elements side-by-side, with no space between them. A
comma (,) between elements results in a tab forward to the
center of the screen or to the beginning of the next screen
line, whichever is closer.

RAND (keyword; [T] key). Controls the starting point of a
sequence of random numbers produced by the RND func-
tion. The statements:

RAND
and:
RAND 0

result in an unpredictable starting point. The statement:
RAND n

where 7 is greater than 0 and less than 65536, results in a
specific and predictable starting point.

REM (keyword; [E] key). Creates a comment (or “remark”) line
in the program listing. The computer ignores REM lines
during the program run. Any kind of comment can be
placed after the word REM.

RETURN (keyword; [Y] key). Indicates the end of a subroutine.
Sends control of the program back to the line following the
GOSUB statement that originally called the subroutine.

RND (function; [T] key). Produces a “random” number greater
than or equal to zero, and less than 1.

RUN (keyword; [R] key). Instructs the computer to begin execut-
ing the lines of the program currently held in memory.
(Begins by performing a CLEAR of any variables from pre-
vious program runs.) If RUN is followed by a program line,
the computer begins the program run at the indicated line.

152 Your Timex Sinclair 1000 and ZX81

SAVE (keyword; [S] key). Stores a program onto a cassette tape.
The SAVE command requires a program name, within quo-
tation marks:

SAVE “NAME*

SCROLL (keyword; [B] key). Moves all the information dis-
played on the screen up by one line. The top line is lost, and
an empty line appears at the bottom of the screen.

SGN (function; [F] key). Supplies the sign of any number; results
inavalueof —1,0,o0r1.

SLOW (shift; [D] key). Returns the computer to the slow calcula-
tion mode.

SPACE Places a space character in a program line or an input
string.

SQR (function; [H] key). Supplies the square root of a nonnega-
tive number.

STEP (shift; [E] key). In a FOR statement, indicates the incre-
mentation (or decrementation) amount for the control vari-
able. For example:

FORI =5TO25 STEP 5

In this statement the control variable I will be increased by 5
for each repetition of the loop. If the STEP clause is missing
from a FOR statement, the default incrementation value is 1.

STOP (shift; [A] key). Stops execution of a program. The word
STOP may be part of a program line, or it can be input from
the keyboard to end a program run.

STRS$ (function; [Y] key). Supplies the string version of a number.
For example:
LET S$ = STR$ 1234
This statement will result in the string value “1234” being
stored in the variable S§.

TAB (function; [P] key). Used with the PRINT statement to dis-
play a message beginning at a specified column of the cur-
rent line. For example:

PRINT TAB 15; “HELLO*

Appendix A: The BASIC Vocabulary 153

will print HELLO beginning at column 15.

TAN (function; [E] key). Supplies the tangent of a number that
represents an angle. TAN assumes that the angle is in radi-
ans (1 degree = .01745 radians).

THEN (shift; [3] key). Introduces the result of an IF statement.
THEN is always followed by a keyword. The statement after
THEN is performed only if the statement after IF is evalu-
ated to true.

TO (shift; [4] key). Introduces the maximum value of the control
variable in a FOR loop. For example:

FOR1=1TO10

TO is also used for “slicing” strings. The following LET
statement assigns values to the 2nd through 4th positions in
the string S$:

LET S$(2 TO 4) = “ABC*

UNPLOT (keyword; [W] key). Erases a pixel from the screen at a
specified address. The general form of the UNPLOT com-

mand is:
UNPLOT h,v

where £ is the horizontal address (from 0 to 63) and v is the
vertical address (from 0 to 43). The UNPLOT address 0,0 is
located at the lower-left corner of the screen.

USR (function; [L] key). Calls a machine-language routine

located at a specified memory address; the general form of
- USR is:

USR a

where a is the memory address of the beginning of the rou-
tine.

VAL (function; [J] key). Supplies the numeric value of a string.
The characters of the string must consist of digits, functions,
calculations, or variables that form a valid numeric expres-
sion.

‘%‘

Appendix B

T/S 1000 Error Codes

At the end of every program run, a message appears in the
lower-left corner of the screen in the form:

m/n

where 7 is the line number where program execution stopped, and
m is one of the following error codes:

0
1

()]

Q = P> © ®©

=

No error; program completed.

Discrepancy between control variables named in FOR
and NEXT statements.

Use of an undefined variable name.
Array index is outside of the range specified in DIM state-

ment.
Computer ig out of memory.
Out of room on TV screen.

A calculation has resulted in a number too large for the
computer to handle.

RETURN statement not preceded by GOSUB.

INPUT used as an immediate command.

Program ended on a STOP statement.

Illegal use of a function (for example: SQR - 1 or LN 0).

Illegal address, code number, or other integer in state-
ments such as PRINT AT, PLOT, CHRS, etc.

The string expression after VAL cannot be evaluated to a
number.

Program interrupted from keyboard by BREAK or STOP
keys.

Not used.
SAVE command without program name.

o r{ 4 P ;,;_‘ ,/,

' P L

b A a . ‘ Ny ,
.«' :} - f e = J{‘ ‘ ’/ o '=_:, L ’,;{ \f‘!’/{/“ ;J‘\‘k':/ ifa‘ i I,,,‘
e { it
- e e T - ; 1 /
= /Wamw/ﬂ 7

IR o : 4 TA Y e
R ’:J_//grg",v g i

[il e

NG ’ . , i . c)
R R // 4 Fomad 57’;}
F 4 i

i / ,:

L /i’f(:;d/

Address, 24, 53-56, 92
Arithmetic operations, 95-99, 127

order of, 96-97, 100-1, 127
Array, 95, 110-15, 127

dimension, 110-11, 122

index into, 112, 127

length, 111, 123

name, 111, 113-14

type, 111, 113-14, 123

with FOR loops, 112-14, 124, 127
Average, 124

Bar graph, 110, 116, 119-21, 127
BASIC, 13, 18-21

ABS, 99, 145

AND, 91, 93-94, 145

ARCCOS, 99, 145

ARCSIN, 99, 145

ARCTAN, 99, 145

AT, 21-24, 53-54, 65-66, 94, 124,
145-46

BREAK key, 45, 68, 71, 85, 146

CHRS, 18, 36, 129, 131-32, 134~
35, 143, 146

CLEAR, 59, 146

CLS, 18, 32, 87, 94, 107, 146

CODE, 36, 129, 132, 134-35, 143,
146

CONT, 146

COPY, 12, 146

COSs, 99, 146

DELETE key, 24, 31, 131, 146

DIM, 111-13, 123-24, 146-47

EDIT key, 31, 41, 147

ENTER key, 27, 31, 85, 147

EXP, 99, 147

FAST, 32, 82, 107, 147

FOR, 32, 34-36, 62-67, 79-81,
94, 124-27, 133, 147

FUNCTION key, 147

GOSUB, 68-71, 87, 91-94, 147~
48

GOTO, 68, 71, 81, 90, 94, 106,
148

Index

GRAPHICS key, 34, 148

IF, 71-75, 90-91, 93-94, 99, 148

INKEYS$, 87, 90-91, 148

INPUT, 28-29, 59-62, 87, 90-91,
93-94, 101-2, 107, 124, 148

INT, 99-01, 138, 142-43, 148

LEN, 18, 36, 129, 133, 135, 140,
142-43, 148

LET, 56-59, 61, 78-79, 92-94, 98,
134, 149

LIST, 42, 52, 77, 149

LLIST, 12, 149

LN, 99, 149

LOAD, 44, 52, 149

LPRINT, 12, 149

NEW, 52, 61, 149

NEXT, 32, 35-36, 62-67, 94, 149-
50

NOT, 150

OR, 91, 93-94, 150

PAUSE, 150

PEEK, 150

PLOT, 54-56, 61-62, 72, 79-80,
87, 90, 94, 96-98, 150~51

POKE, 151

PRINT, 21-22, 52-54, 57-59, 94,
151

RAND, 151

REM, 89, 93-94, 122, 151

RETURN, 69-70, 94, 151

RND, 137-39, 142, 151

RUN, 37, 52, 106, 151-52

SAVE, 43, 52, 152

SCROLL, 152

SGN, 99-00, 152

SIN, 99

SLOW, 35, 82, 108, 152

SPACE key, 152

SQR, 100-01, 152

STEP, 66-67, 80-81, 94, 152

STOP, 70-71, 106, 152

STRS$, 152

TAB, 87, 93-94, 152-53

158 Your Timex Sinclair 1000 and ZX81

TAN, 99, 153
THEN, 71-75, 90-91, 94, 153
TO, 62-67, 94, 136-37, 142, 153
UNPLOT, 54-56, 62, 87, 94, 153
USR, 153
VAL, 91-94, 107-8, 153

Byte, 10

Calculations with INPUT, 101-2
Cassette tape recorder, 1, 3-4, 11-12,
42-45
Centering, 142-43
Character code, 129-36
Chip, 5
Comma, 98
Computer
languages, 12-13.
programming, 13-14, 38-39
Concatenation, 129, 134-36
Constants, 88, 121-22, 125
Control variable, 62-67, 80-81, 125,
133
Cues
F, 21, 24, 31
G, 21, 34
K, 8-9, 21-22
L, 21-22, 31, 34
S, 21
Current line, 41-42

Damaging the computer, 6

Decisions, 71-75

Dialogue, 28, 38-39, 122

Direction keys, 31

Division by zero, 98, 106

Documentation, 48, 89

Drawing pictures on the screen, 81-
85

E, use of in scientific notation, 109

Echo, 103-04, 116, 122, 140

Editing program lines, 7, 29-32, 37,
40-42, 64

Error messages, 7, 58-59, 72, 98,
100, 108, 155

Equality, 72-74, 91
Exponentiation, 96-97

Floating point binary, 88, 90
Functions, 22-25, 99-101

Games, 48, 138-39
Graphics, xiii, 2, 7
characters, 33-34, 36, 51, 126, 130

Hardware, xii-xiii

Immediate commands, 52, 96-99,
136-37
Inequality, 72-74, 91
Initialization, 87, 107
Input, 1
errors, 103-4, 117, 119

Keyboard, xii, 1-3, 130
Keyword, 8, 19-22

Listing, 7

Loading programs, 44-45

Loop, 32, 36, 63, 68, 70-71, 81
nested, 125-27

Memory, xiv, 7, 10-11, 51, 88-89
Memory module, xiv, 1, 4, 11, 45
Microprocessors, 6

Mistakes, 6, 14, 24-25

Mode, 21-22, 34

Order of arithmetic operations, 96-
97, 100-1, 127
Output, 1

Parentheses, 35, 97-98, 106, 127

Pixel, 55, 82

Power supply, 3-4, 8

Precision, 109

Printer, 1, 4, 12

Program, 7, 11, 17-21, 52, 67

Prompt, 60-62, 75, 122

Punctuation in BASIC, 25, 35, 98

Purchasing software, 14-15, 45, 47-
48

RAM, 10-11

Random numbers, 137-39

Range, 109

Reverse video, 8, 35-36, 51, 130-35
RF modulator, 8

ROM, 10

Rounding, 126

Running programs, 7, 37-38

Saving programs, 42-43, 115

Scientific notation, 109

Semicolon, 35, 64-65, 98

Shift characters, 25-26, 31

Shifting, 3, 22, 24

Software, xii-xiii, 45

Spreadsheet programs, 46

Strings, xiii, 35, 56, 58-59, 107-8,
129-43

null string, 133-35
slicing a string, 129, 136-37, 142
substring, 136-37

Index 159

Subroutine, 69-71, 85-87, 122, 124
calculated GOSUB, 91-92
Syntax, 27

Touch sensitive, 2, 21
True-or-false statement, 72-74, 91
TV set, 1, 3, 6-9

User manual, xi

Variable, 29, 56-59, 61, 110
in arithmetic expressions 102, 104-
6
name, 28-29, 56-58, 78
type, 29, 56
VU-CALGC, 45-47

ZX81, xiv
Z80 microprocessor, 5

The SYBEX Library

YOUR FIRST COMPUTER

by Rodnay Zaks 264 pp., 150 illustr., Ref. 0-045

The most popular introduction to small computers and their peripherals: what
they do and how to buy one.

DON’T (or How to Care for Your Computer)

by Rodnay Zaks 222 pp., 100 illustr., Ref. 0-065

The correct way to handle and care for all elements of a computer system, includ-
ing what to do when something doesn’t work.

INTERNATIONAL MICROCOMPUTER DICTIONARY

140 pp., Ref. 0-067 S

All the definitions and acronyms of microcomputer jargon defined in a handy
pocket-size edition. Includes translations of the most popular terms into ten
languages.

INTRODUCTION TO WORD PROCESSING

by Hal Glatzer 216 pp., 140 illustr., Ref. 0-076

Explains in plain language what a word processor can do, how it improves pro-
ductivity, how to use a word processor and how to buy one wisely.

BASIC FOR BUSINESS

by Douglas Hergert 250 pp., 15 illustr., Ref. 0-080

A logically organized, no-nonsense introduction to BASIC programming for
business applications. Includes many fully-explained accounting programs, and
shows you how to write them.

FIFTY BASIC EXERCISES

By J. P. Lamoitier 236 pp., 90 illustr., Ref. 0-056

Teaches BASIC by actual practice, using graduated exercises drawn from every-
day applications. All programs written in Microsoft BASIC.

CELESTIAL BASIC: Astronomy on Your Computer
By Eric Burgess 320 pp., 65 illustr., Ref. 0-087
A collection of BASIC programs that rapidly complete the chores of typical as;

tronomical computations. It’s like having a planetarium in your own home! - ’

Displays apparent movement of stars, planets and meteor showers.

2344 Sixth Street
Berkeley,

California 94710 /\SYEH

Tel: (415) 848-8233
Telex: 336311

g LT g M Sy s e g = e

4

e . S— A

YOUR |
TIVMIEX SINICLAIR
| 1000
ANDZX81T1

Your Timex Sinclair 1000™ and zxg1™

‘takes you from the very beginning and explains in simple, everyday

language how to use your Timex Sinclair 1000 or ZX81 to its fullest capa-
bilities.

You will duickly learn howto. ..

¢ connect your TV and cassette recorder to the computer and
make them work together

* use the keyboard to give commands to your computer

* write your own programs for graphics, calculations, games, and
more

¢ use the easy and versatile BASIC programming language

* use the ready-to-run programs included in this book to:

—turn your computer into a super calculator .
—make bar graphs to help calculate home finances
—draw pictures on your TV screen

Your Timex Sinclair 1000 and ZX81 will help you get the most out of your
new computer.

ABOUT THE AUTHOR:
Douglas Hergertis on the Sybex editorial staff, and is the author of BASIC

for Business and Mastering VisiCalc. Drawing on his broad computer

expertise, he has also contributed to several other Sybex titles as editor
and translator.

ISBN 0-89588-099-7 §

